
NI-488DDK Software
Reference Manual

July 1997 Edition
Part Number 321418A-01

© Copyright 1997 National Instruments Corporation.
All rights reserved.

Internet Support
support@natinst.com
E-mail: info@natinst.com

FTP Site: ftp.natinst.com

Web Address: http://www.natinst.com

Bulletin Board Support
BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
(512) 418-1111

Telephone Support (U.S.)
Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices

Australia 02 9874 4100, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 527 2321, France 01 48 14 24 24, Germany 089 741 31 30,
Hong Kong 2645 3186, Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970,
Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466,
Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70,
Switzerland 056 200 51 51, Taiwan 02 377 1200, United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by
receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT
THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability
of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any
action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein
does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National
Instruments installation, operation, or maintenance instructions; owner’s modification of the product; owner’s abuse,
misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
NAT4882®, NI-488®, Turbo488®, HS488™, NI-488.2™, NI-488DDK™, and TNT4882C™ are trademarks of National
Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical or
clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the user
or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

© National Instruments Corporation v NI-488DDK Software Reference Manual

Table
of

Contents

About This Manual
Organization of This Manual...xi
Conventions Used in This Manual ..xii
Related Documentation ...xiii
Customer Communication...xiii

Chapter 1
Introduction

NI-488DDK Software..1-1
Working with the Distribution Media ...1-1
Working with the Distribution Contents ...1-2

GPIB Overview ...1-3
Talkers, Listeners, and Controllers..1-3
Controller-In-Charge and System Controller ..1-4
GPIB Addressing...1-4
Sending Messages across the GPIB ..1-5

Data Lines ...1-5
Handshake Lines...1-5
Interface Management Lines...1-6

Setting up and Configuring Your System ...1-7
Controlling More Than One Board...1-8
Configuration Requirements ...1-8

Table of Contents

NI-488DDK Software Reference Manual vi © National Instruments Corporation

Chapter 2
Developing Your Driver

Driver Organization .. 2-1
Driver Coding Conventions .. 2-4
Choosing an Implementation Method... 2-4
Writing a New OS Layer .. 2-5

Support Code Location... 2-5
Porting the DDK Driver.. 2-6

Compiling, Linking, and Installing the Driver.. 2-7
Testing and Debugging the Driver.. 2-7

Debugging Run-Time Errors .. 2-8
Documentation of Debugging Tools .. 2-9

Chapter 3
Developing Your Application

Using NI-488DDK Functions ... 3-1
Items to Include in Your Application ... 3-1
Checking Status with Global Variables .. 3-2

Status Word (ibsta) ... 3-2
Error Variable (iberr).. 3-3
Count Variables (ibcnt and ibcntl).. 3-4

Compiling and Linking Your Application .. 3-4
Debugging Considerations.. 3-5

Using the Global Status Variables .. 3-5
Configuration Errors... 3-6
Timing Errors ... 3-6
Communication Errors.. 3-6

Repeat Addressing.. 3-6
Termination Method... 3-7

Chapter 4
NI-488DDK Functions

Function Names .. 4-1
Purpose.. 4-1
Format... 4-1
Input and Output ... 4-1
Description..4-1

Table of Contents

© National Instruments Corporation vii NI-488DDK Software Reference Manual

Examples ...4-1
Possible Errors...4-1
List of NI-488DDK Functions...4-2
IBCAC...4-3
IBCMD..4-4
IBEOS..4-5
IBEOT ...4-7
IBFIND..4-8
IBGTS..4-9
IBIST ...4-10
IBLINES..4-11
IBLN..4-13
IBLOC ...4-14
IBONL...4-15
IBPAD ...4-16
IBPOKE...4-17
IBPPC..4-18
IBRD..4-19
IBRPP..4-20
IBRSC..4-21
IBRSV ...4-22
IBSAD ...4-23
IBSIC...4-24
IBSRE..4-25
IBTMO ..4-26
IBWAIT...4-28
IBWRT ..4-30

Chapter 5
GPIB Programming Techniques

Termination of Data Transfers ..5-1
Waiting for GPIB Conditions ..5-2
Talker/Listener Applications ...5-2
Serial Polling ...5-3

Service Requests from IEEE 488 Devices ..5-3
Service Requests from IEEE 488.2 Devices ...5-3
SRQ and Serial Polling with NI-488DDK Functions......................................5-3

Parallel Polling ..5-4
Implementing a Parallel Poll with NI-488DDK Functions5-4

Table of Contents

NI-488DDK Software Reference Manual viii © National Instruments Corporation

Appendix A
Multiline Interface Messages

Appendix B
Status Word Conditions

ERR... B-2
TIMO .. B-2
END .. B-2
SRQI ... B-2
CMPL.. B-3
LOK .. B-3
REM.. B-3
CIC.. B-3
ATN .. B-4
TACS .. B-4
LACS .. B-4
DTAS.. B-4
DCAS.. B-5

Appendix C
Error Codes and Solutions

EDVR (0) .. C-2
ECIC (1).. C-2
ENOL (2) .. C-3
EADR (3) .. C-3
EARG (4) .. C-4
ESAC (5)...C-4
EABO (6) .. C-4
ENEB (7) .. C-5
ECAP (11)... C-5

Appendix D
Using the PCI-GPIB Hardware

Hardware Overview .. D-1
Hardware Installation.. D-2
Hardware Specifications ... D-4

Table of Contents

© National Instruments Corporation ix NI-488DDK Software Reference Manual

Appendix E
Using the CPCI-GPIB Hardware

Hardware Overview...E-1
Hardware Installation ..E-2
Hardware Specifications..E-4

Appendix F
Using the PMC-GPIB Hardware

Hardware Overview...F-1
Hardware Installation ..F-2
Hardware Specifications..F-4

Appendix G
Customer Communication

Glossary

Figures
Figure 1-1. GPIB Address Bits ...1-4
Figure 1-2. Linear and Star System Configuration ...1-7
Figure 1-3. Example of Multiboard System Setup ...1-8

Figure 2-1. The IB Driver Module (ib.c) ..2-3
Figure 2-2. The CIB Language Interface Module (cib.c) ...2-3
Figure 2-3. User-Level Implementation ...2-5
Figure 2-4. Kernel-Level Implementation ..2-5

Figure D-1. Installing the PCI-GPIB ...D-3

Figure E-1. Installing the CPCI-GPIB...E-3

Figure F-1. Installing the PMC-GPIB...F-3

Table of Contents

NI-488DDK Software Reference Manual x © National Instruments Corporation

Tables
Table 1-1. GPIB Handshake Lines ... 1-5
Table 1-2. GPIB Interface Management Lines ... 1-6

Table 2-1. NI-488DDK Driver Directory ... 2-2

Table 3-1. Status Word Layout ... 3-3

Table 4-1. NI-488DDK Functions .. 4-2
Table 4-2. EOS Configurations... 4-5
Table 4-3. Timeout Code Values .. 4-27
Table 4-4. Wait Mask Layout ... 4-29

Table A-1. Multiline Interface Messages... A-2

Table B-1. Status Word Layout ... B-1

Table C-1. GPIB Error Codes.. C-1

Table D-1. PCI-GPIB Hardware Characteristics ... D-4

Table E-1. CPCI-GPIB Hardware Characteristics... E-4

Table F-1. PMC-GPIB Hardware Characteristics ... F-4

© National Instruments Corporation xi NI-488DDK Software Reference Manual

About
This

Manual

This manual describes the features and functions of the NI-488 Driver
Development Kit (NI-488DDK) software. You can customize the
NI-488DDK software for the operating system you use. This manual
assumes that you are already familiar with general operating system
fundamentals and device driver development concepts.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, Introduction, describes the NI-488DDK software and
gives an overview of GPIB.

• Chapter 2, Developing Your Driver, describes the organization of the
NI-488DDK driver and provides guidelines for developing and
debugging the driver on a particular operating system.

• Chapter 3, Developing Your Application, explains how to develop a
GPIB application using NI-488DDK functions.

• Chapter 4, NI-488DDK Functions, lists the NI-488DDK functions
and describes the purpose, format, input and output parameters, and
possible errors for each function.

• Chapter 5, GPIB Programming Techniques, describes techniques for
using some NI-488DDK functions in your application.

• Appendix A, Multiline Interface Messages, contains a multiline
interface message reference list, which describes the mnemonics and
messages that correspond to the interface functions.

• Appendix B, Status Word Conditions, describes the conditions
reported in the status word, ibsta .

• Appendix C, Error Codes and Solutions, describes each error,
including conditions under which it might occur and possible
solutions.

About This Manual

NI-488DDK Software Reference Manual xii © National Instruments Corporation

• Appendix D, Using the PCI-GPIB Hardware, contains an overview
of the PCI-GPIB interface board, general instructions for installing
the board in any computer, and a summary of the hardware
specifications.

• Appendix E, Using the CPCI-GPIB Hardware, contains an overview
of the CPCI-GPIB interface board, general instructions for installing
the board in any computer, and a summary of the board’s hardware
specifications.

• Appendix F, Using the PMC-GPIB Hardware, contains an overview
of the PMC-GPIB interface board, general instructions for installing
the board in any computer, and a summary of the board’s hardware
specifications.

• Appendix G, Customer Communication, contains forms you can use
to request help from National Instruments or to comment on our
products and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

Conventions Used in This Manual
The following conventions are used in this manual.

This icon to the left of bold italicized text denotes a note, which alerts
you to important information.

This icon to the left of bold italicized text denotes a caution, which
advices you of precautions to take to avoid injury, data loss, or a
system crash.

bold italic Bold italic text denotes a note, caution, or warning.

bold monospace Bold text in this font denotes the messages and responses that the
computer automatically prints to the screen. This font also emphasizes
lines of code that are different from the other examples.

IEEE 488 and IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard
IEEE 488.2 488.1-1987 and the ANSI/IEEE Standard 488.2-1992, respectively, which

define the GPIB.

About This Manual

© National Instruments Corporation xiii NI-488DDK Software Reference Manual

italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept. This font also denotes text for which you supply the appropriate
word or value.

italic monospace Italic text in this font denotes that you must supply the appropriate words
or values in the place of these items.

monospace Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives,
paths, directories, programs, subprograms, subroutines, device names,
functions, operations, variables, filenames and extensions, and for
statements and comments taken from programs.

paths Paths in this manual are denoted using backslashes (\) or forward
slashes (/) to separate drive names, directories, folders, and files.

Related Documentation
The following documents contain information that you may find helpful
as you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface
for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,
Protocols, and Common Commands

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make
it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in Appendix G,
Customer Communication, at the end of this manual.

© National Instruments Corporation 1-1 NI-488DDK Software Reference Manual

Introduction
1

Chapter

This chapter describes the NI-488DDK software and gives an overview
of GPIB.

NI-488DDK Software
The NI-488DDK software provides a subset of the GPIB functionality
found in standard NI-488.2 drivers from National Instruments. It is
intended primarily for use by customers who need to develop GPIB
applications on computers or operating systems for which standard
NI-488.2 kits are not available.

The application programming interface (API) of the NI-488DDK
software is completely compatible with the API of standard NI-488.2
drivers. However, internally, the NI-488DDK software is designed to be
easily customized by users familiar with device driver development. The
design is compatible with a variety of modern operating systems,
including both singlethreaded and multithreaded kernels. For your
convenience, the software distribution includes example OS-specific
implementations that you can use with little or no change on the intended
operating system. You can also use these implementations as templates
for developing your own OS-specific implementations.

Working with the Distribution Media
The NI-488DDK software is distributed on one or more DOS-formatted
3.5-inch floppy diskettes. When distributed electronically, the software is
provided in a single, compressed, tar -formatted file compatible with
most UNIX-based systems. The top-level contents of the main
DOS-formatted diskette are as follows:

README Version specific documentation file
DDK_TAR.Z Alternate distribution file for UNIX users

Chapter 1 Introduction

NI-488DDK Software Reference Manual 1-2 © National Instruments Corporation

DRIVER Driver source files directory
UTIL Utility source files directory

The DDK_TAR.Z file contains the complete NI-488DDK software
distribution in a compressed, tar format that UNIX users and others may
find easier to work with when transferring the software to non-DOS
systems. To extract the distribution files from DDK_TAR.Z, or from a
similar file received electronically, transfer the file without conversion
(for example, if using FTP, transfer the file in binary mode) to a
UNIX-compatible system and enter the following commands:

uncompress DDK_TAR.Z

tar xvf DDK_TAR

After the contents of the file have been extracted, the current directory
contains a distribution directory named ni488ddk_v X.X , where X.X is a
version number. The contents of the extracted distribution directory are
as follows:

README Version specific documentation file
driver/ Driver source files directory
util/ Utility source files directory

Notice that the only differences between the contents of the
DOS-formatted diskette and those of the extracted tar file, other than the
missing DDK_TAR.Z file, are that the files and directories on the DOS
diskette are all named in uppercase letters only, and the DOS-based files
have a carriage return character appended to each line. From this point
forward, this manual uses the mixed case UNIX naming conventions
when referring to the contents of the distribution media.

Working with the Distribution Contents
The _README_ file contains any additional information or changes to the
software documentation made since this manual was last updated.

The driver/ directory on the distribution media contains all of the
source files necessary to build the NI-488DDK driver. To port the DDK
driver to a specific operating system, you generally need to modify only
the files in one of the driver/OS_Layer/ subdirectories. This process
is described in greater detail in Chapter 2, Developing Your Driver.

The util/ directory on the distribution media contains the C source files
for a sample IEEE 488.2 application library, as well as an automated

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-488DDK Software Reference Manual

driver test program and other diagnostic tools. You can use the 488.2
application library to provide a layer of high-level GPIB functionality to
your application and to see how to use some of the low-level functions in
the DDK driver. You can use the driver test program to verify that your
DDK driver is working properly after you have written the files in the
new OS Layer directory. Use of the driver test program and other
diagnostic tools is described in greater detail in Chapter 2, Developing
Your Driver. Use of the IEEE 488.2 application library is described in
Chapter 3, Developing Your Application. Some of the IEEE 488.2
routines provided in the application library for SRQ servicing are
described in Chapter 5, GPIB Programming Techniques. For information
about other routines provided in the IEEE 488.2 library, refer to the
ni4882.c file in the util/ directory.

GPIB Overview
The ANSI/IEEE Standard 488.1-1987, also known as GPIB (General
Purpose Interface Bus), describes a standard interface for communication
between instruments and controllers from various vendors. It contains
information about electrical, mechanical, and functional specifications.
The GPIB is a digital, 8-bit parallel communications interface with data
transfer rates of 1 Mbyte/s and above, using a 3-wire handshake. The bus
supports one System Controller, usually a computer, and up to
14 additional instruments. The ANSI/IEEE Standard 488.2-1992 extends
IEEE 488.1 by defining a bus communication protocol, a common set of
data codes and formats, and a generic set of common device commands.

Talkers, Listeners, and Controllers
GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends
out data messages. Listeners receive data messages. The Controller,
usually a computer, manages the flow of information on the bus. It
defines the communication links and sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital
voltmeter, for example, can be a Talker and a Listener. If your personal
computer has a National Instruments GPIB interface board and
NI-488DDK software installed, it can function as a Talker, Listener, and
Controller.

Chapter 1 Introduction

NI-488DDK Software Reference Manual 1-4 © National Instruments Corporation

Controller-In-Charge and System Controller
You can have multiple Controllers on the GPIB, but only one Controller
at a time can be the active Controller, or Controller-In-Charge (CIC). The
CIC can either be active or inactive (Standby) Controller. Control can
pass from the current CIC to an idle Controller, but only the System
Controller, usually a GPIB interface board, can make itself the CIC.

GPIB Addressing
All GPIB devices and boards must be assigned a unique GPIB address. A
GPIB address is made up of two parts: a primary address and an optional
secondary address.

The primary address is a number in the range 0 to 30. The GPIB
Controller uses this address to form a talk or listen address that is sent
over the GPIB when communicating with a device.

A talk address is formed by setting bit 6, the TA (Talk Active) bit of the
GPIB address. A listen address is formed by setting bit 5, the LA (Listen
Active) bit of the GPIB address. For example, if a device is at address 1,
the Controller sends hex 41 (address 1 with bit 6 set) to make the device a
Talker. Because the Controller is usually at primary address 0, it sends
hex 20 (address 0 with bit 5 set) to make itself a Listener. Figure 1-1
shows the configuration of the GPIB address bits.

Bit
Position

7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address (range 0-30)

Figure 1-1. GPIB Address Bits

With some devices, you can use secondary addressing. A secondary
address is a number in the range hex 60 to hex 7E. When secondary
addressing is in use, the Controller sends the primary talk or listen
address of the device followed by the secondary address of the device.

Chapter 1 Introduction

© National Instruments Corporation 1-5 NI-488DDK Software Reference Manual

Sending Messages across the GPIB
Devices on the bus communicate by sending messages. Signals and lines
transfer these messages across the GPIB interface, which consists of
16 signal lines and eight ground return (shield drain) lines. The 16 signal
lines are discussed in the following sections

Data Lines
Eight data lines, DIO1 through DIO8, carry both data and command
messages.

Handshake Lines
Three hardware handshake lines asynchronously control the transfer of
message bytes between devices. This process is a three-wire interlocked
handshake, and it guarantees that devices send and receive message bytes
on the data lines without transmission error. Table 1-1 summarizes the
GPIB handshake lines.

Table 1-1. GPIB Handshake Lines

Line Description

NRFD
(not ready for data)

Listening device is ready/not ready to receive a
message byte. Also used by the Talker to signal
high-speed GPIB transfers.

NDAC
(not data accepted)

Listening device has/has not accepted a
message byte.

DAV
(data valid)

Talking device indicates signals on data lines
are stable (valid) data.

Chapter 1 Introduction

NI-488DDK Software Reference Manual 1-6 © National Instruments Corporation

Interface Management Lines
Five GPIB hardware lines manage the flow of information across the bus.
Table 1-2 summarizes the GPIB interface management lines.

Table 1-2. GPIB Interface Management Lines

Line Description

ATN
(attention)

Controller drives ATN true when it sends
commands and false when it sends data messages.

IFC
(interface clear)

System Controller drives the IFC line to initialize
the bus and make itself CIC.

REN
(remote enable)

System Controller drives the REN line to place
devices in remote or local program mode.

SRQ
(service request)

Any device can drive the SRQ line to
asynchronously request service from the Controller.

EOI
(end or identify)

Talker uses the EOI line to mark the end of a data
message. Controller uses the EOI line when it
conducts a parallel poll.

Chapter 1 Introduction

© National Instruments Corporation 1-7 NI-488DDK Software Reference Manual

Setting up and Configuring Your System
Devices are usually connected with a cable assembly consisting of a
shielded 24-conductor cable with both a plug and receptacle connector at
each end. With this design, you can link devices in a linear configuration,
a star configuration, or a combination of the two. Figure 1-2 shows the
linear and star configurations.

Device A

Device B

Device C

Device DDevice A

Device CDevice B

a. Linear Configuration b. Star Configuration

Figure 1-2. Linear and Star System Configuration

Chapter 1 Introduction

NI-488DDK Software Reference Manual 1-8 © National Instruments Corporation

Controlling More Than One Board
Figure 1-3 shows an example of a multiboard system configuration.
gpib0 is the access board for the voltmeter, and gpib1 is the access
board for the plotter and printer. The control functions of the devices
automatically access their respective boards.

One
GPIB

Another
GPIB

Digital
Voltometer

Plotter

Printer

gpib0

gpib1

Figure 1-3. Example of Multiboard System Setup

Configuration Requirements
To achieve the high data transfer rate that the GPIB was designed for,
you must limit the physical distance between devices and the number of
devices on the bus. The following restrictions are typical:

• A maximum separation of four meters between any two devices and
an average separation of two meters over the entire bus

• A maximum total cable length of 20 m

• A maximum of 15 devices connected to each bus, with at least
two-thirds powered on

Chapter 1 Introduction

© National Instruments Corporation 1-9 NI-488DDK Software Reference Manual

For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on

• Cable lengths as short as possible up to a maximum of 15 m of cable
for each system

• With at least one equivalent device load per meter of cable

If you want to exceed these limitations, you can use bus extenders to
increase the cable length or expanders to increase the number of device
loads. Extenders and expanders are available from National Instruments.

© National Instruments Corporation 2-1 NI-488DDK Software Reference Manual

Developing Your Driver
2

Chapter

This chapter describes the organization of the NI-488DDK driver and
provides guidelines for developing and debugging the driver on a
particular operating system.

Driver Organization
The NI-488DDK driver consists of a low-level driver module (IB) and a
high-level language interface module (CIB). The IB module includes
three separate layers: an Operating System Layer, Common Layer, and
Hardware Layer. The CIB module includes only two layers: an Operating
System Layer and Common Layer. The organization of the files in the
driver/ directory on the distribution media, as shown in Table 2-1,
reflects the organization of both the IB and CIB modules.

For a list of the specific files included in a particular DDK release, refer
to the _README_ file in the main driver/ directory and to the
README files, if present, in the HW_Layer/ and OS_Layer/

subdirectories.

The IB module (ib.c) and CIB module (cib.c) are organized as shown
in Figures 2-1 and 2-2, respectively. As indicated in Figure 2-1, the ib.c

file serves as a container, among other things, for all the other files that
make up the low-level driver. Likewise, the cib.c file serves as a
container for the files that make up the C language interface. The ib.c

and cib.c files are described in the Writing a New OS Layer section
later in this chapter.

Chapter 2 Developing Your Driver

NI-488DDK Software Reference Manual 2-2 © National Instruments Corporation

Table 2-1. NI-488DDK Driver Directory

Functional
Layer

File Description

Hardware _README_ Hardware-specific documentation file (optional)

Dependent nichp_hw.h General chip-level include file

(HW_Layer/) nipci_hw.c PCI-specific source file

nipci_hw.h PCI-specific include file

nitn_chw.c TNT chip-specific source file

nitn_chw.h TNT chip-specific include file

Operating _README_ OS-specific documentation file (optional)

System cib.c OS-specific C Language/API source file

Dependent cib.h OS-specific C Language/API include file

(OS_Layer/*/) ib.c OS-specific driver source file

ib.h OS-specific driver include file

makefile OS/compiler-specific driver make file

Common _README_ Version-specific documentation file

cibgen.c Generic C language interface source file

ibconf.h Driver configuration include file

ni488.c NI-488DDK functions source file

ni_proto.h Prototype include file

ni_suprt.c Support functions source file

ni_suprt.h Support functions include file

ugpib.h User application include file

Chapter 2 Developing Your Driver

© National Instruments Corporation 2-3 NI-488DDK Software Reference Manual

/**
 * NI-488 Driver Development Kit for GPIB Interfaces
 * Copyright (c) 1997 National Instruments Corporation
 * All rights reserved.
 **/
 :
 :
#include "cib.h" /* NI include files... */
#include "ugpib.h"
#include "ibconf.h"
#include "ib.h"
#include "ni_suprt.h"
#include "nichp_hw.h"
#include "nipci_hw.h"
#include "ni_proto.h"
 :
 :
#include "ni_suprt.c" /* Generic IB code... */
#include "ni488.c"

#include "nipci_hw.c" /* HW-specific code */
 :
 :

Figure 2-1. The IB Driver Module (ib.c)

/**
 * NI-488.2 C Language Interface
 * Copyright (c) 1997 National Instruments Corporation
 * All rights reserved.
 **/
 :
 :
#include "cib.h"
#include "ugpib.h"
 :
 :
#include "cibgen.c" /* Generic CIB code */
 :
 :

Figure 2-2. The CIB Language Interface Module (cib.c)

Chapter 2 Developing Your Driver

NI-488DDK Software Reference Manual 2-4 © National Instruments Corporation

Driver Coding Conventions
Following are some of the coding conventions adopted throughout the
source files of the NI-488DDK driver. You may find it useful to keep the
following conventions in mind when studying the driver source code, and
when adding new code of your own:

• The names of all C functions and variables begin with a lowercase
letter, and may contain both uppercase and lowercase letters.

• The names of all C macros begin with an uppercase letter, and may
contain both uppercase and lowercase letters.

• The names of all #define constants are composed of only
uppercase letters.

• With the exception of the cibgen.c source file, all functions within
the same C source file begin with the prefix of the file name itself.
For example, all functions in the ib.c file begin with the prefix ib_ ,
and all functions in the ni_suprt.c file begin with the prefix ni_ .

Choosing an Implementation Method
Depending on your target operating system, you can implement the
NI-488DDK driver as a user- or kernel-level driver. You can link a
user-level driver directly to your application, just as you would any other
object file or library. You install a kernel-level driver as part of the
operating system, thus making it a system resource available to all
application programs. In general, user-level drivers are easier to
implement than kernel-level drivers. Some operating systems support
either method, while others support only the kernel-level method.

The implementation method you choose may depend on several factors.
For example, a user-level implementation may be adequate if the driver is
used by only one application at a time and the driver does not use
interrupts. Conversely, a kernel-level implementation may be necessary if
the driver must be shared among several applications or if you want
interrupt support. There may also be performance issues related to either
implementation choice. Refer to the driver development documentation
for your target operating system for more information about your options.
For an example of a user-level implementation, refer to the
driver/OS_Layer/DOS subdirectory on the distribution media. For an
example of a kernel-level implementation, refer to the
driver/OS_Layer/DgtlUNIX subdirectory on the distribution media.

Chapter 2 Developing Your Driver

© National Instruments Corporation 2-5 NI-488DDK Software Reference Manual

In a user-level implementation, all of the .c files in the target OS_Layer

subdirectory are linked to the application program, either directly or
indirectly. In a kernel-level implementation, only the cib.c file is linked
to the application program, while the ib.c file is linked into the
operating system kernel. Refer to Figures 2-3 and 2-4 for illustrations of
the differences between these two implementation methods.

Application
Program

CIB
Module

IB
Module

GPIB
Hardware

Figure 2-3. User-Level Implementation

Application
Program

CIB
Module

IB
Module

GPIB
Hardware

User Space Kernel Space

Figure 2-4. Kernel-Level Implementation

Writing a New OS Layer
Regardless of the implementation method you choose, porting the
NI-488DDK driver primarily involves writing a new OS Layer for the
target operating system. The OS Layer contains all of the system-specific
code necessary to interface the application program to the DDK driver,
and to interface the driver to the system.

Support Code Location
The code that interfaces the application program to the DDK driver is
contained in the cib.* files. These files make up the OS-dependent
portion of the C language interface to the driver. The generic,
OS-independent portion of the C language interface is in the cibgen.c

file of the main driver/ directory.

The low-level OS interface to the other layers of the DDK driver is
provided through a set of macros and data types defined in the ib.h file,

Chapter 2 Developing Your Driver

NI-488DDK Software Reference Manual 2-6 © National Instruments Corporation

with additional support code provided in the ib.c file as needed. This
support code includes several constants, variables, and functions that are
required in all NI-488DDK implementations. The ib.c file also provides
any other OS-specific functionality required for the operation of the
driver, such as initializing the driver, registering interrupts, and calling
the ni488_enter entry point after you call the driver via its standard
entry point. On UNIX and some other operating systems, this entry point
is typically ioctl . Refer to the cib.* files in the
driver/OS_Layer/DOS subdirectory for an example of an alternative
implementation.

A listing and brief description of the constants, macros, functions, and
data types required in the OS Layer files of the driver are provided in the
README file of the main driver/ directory. For a better
understanding of the usage and purpose of the items listed there, refer to
the code and comments of the C files in the example
driver/OS_Layer/ subdirectories.

Porting the DDK Driver
The easiest way to port the DDK driver to a new OS is to copy the files in
one of the example OS Layer subdirectories to a new sub-directory and
then modify those files for the new OS. Choose an OS Layer
implementation that is most like the one you want to develop for the
target operating system. In some cases, it may be necessary to divide the
functionality contained in one of the .c files into two or more files. For
example, if some of the ib.c functionality must be written in assembly
language, you might decide to set up two ib files, ib.c and ib.asm . If
at all possible, avoid modifying any driver files outside of the OS Layer
unless there is a compelling reason to do so (for example, to fix a bug).
By limiting your changes to the OS files only, you ensure maximum
source code compatibility with any future versions of the DDK package,
as well as functional compatibility with other NI-488 drivers from
National Instruments.

Note: National Instruments can provide a variety of support services to help
you develop the OS Layer for your NI-488DDK driver. However,
National Instruments generally cannot provide support for changes or
additions to the functionality of NI-488 or to other areas of the DDK
driver outside of the OS Layer. For specific questions regarding the
features and functionality of a target OS, contact the OS vendor.

Chapter 2 Developing Your Driver

© National Instruments Corporation 2-7 NI-488DDK Software Reference Manual

Compiling, Linking, and Installing the Driver
After editing the files in the driver/OS_Layer subdirectory, you create
an executable NI-488DDK driver by compiling the ib.c file. To create
the C language interface to the driver, compile the cib.c file. Refer to
the documentation that came with the operating system and the
C compiler you are using for detailed information about compiling,
linking, and installing a new device driver. You might also find it useful
to refer to the makefile files included in the example OS_Layer

subdirectories on the distribution media.

In general, you compile the ib.c and cib.c source files the same way
you would any other C source file, to produce two binary object files. If
you are implementing a user-level driver, in most cases you should link
both the ib and cib object files directly to your application program. If
you are implementing a kernel-level driver, only the cib object file
should be linked directly to your application, while the ib object file
must be linked into the operating system kernel itself. Depending on your
system, you link the ib object file into the system by either statically
linking it to the object files that make up the system kernel, and then
rebooting the system, or by executing special system commands to load
the ib object file dynamically into the system, without rebooting.

Testing and Debugging the Driver
The NI-488DDK distribution media includes an automated test program
called ibchat that you can use to verify the correct operation of a new
NI-488DDK driver. The program is written in C and is compatible with a
variety of text-based systems. The test is designed to be run between two
GPIB interfaces installed in separate NI-488 based systems, or between
two GPIB interfaces installed in a single, multitasking, NI-488 based
system.

Separate invocations of ibchat must be run on both GPIB interfaces
participating in the test, but both interfaces do not have to be controlled
by an NI-488DDK driver. Because ibchat is an NI-488 application, it
can be run using any NI-488 compatible driver, which gives you
flexibility in setting up the test. For example, for one side of the test, you
could compile and run ibchat on any of a variety of Windows or
UNIX-based systems supported by NI-488.2M drivers from National
Instruments.

Chapter 2 Developing Your Driver

NI-488DDK Software Reference Manual 2-8 © National Instruments Corporation

To use the test program, compile and link ibchat.c as you would any
other NI-488DDK application, and run the resulting executable file. This
process is described in Chapter 3, Developing Your Application. For
example, on a UNIX-based system, you might enter the following
commands to compile and run ibchat :

cc ibchat.c cib.c -o ibchat
ibchat

After startup, ibchat prompts you to designate one interface at address 0
(MA0) and the other interface at address 1 (MA1). The test supports a
number of command line options that you can use to modify the behavior
of the test. These options are described briefly in an online help screen
that you can access by starting the program as follows:

ibchat -h

Depending on the options selected, the ibchat test runs until it
completes or until you terminate it manually. If the test encounters an
error before terminating normally, the test halts and prints out some
diagnostic information to help you determine the nature of the error.

Debugging Run-Time Errors
In addition to the ibchat diagnostic information, you can make use of
an extensive set of conditional debugging and tracing statements
available in the DDK driver source files to help identify and fix run-time
errors. These statements can be configured via compile-time and run-time
flags to direct debugging information to a system console, an internal
tracing buffer in the driver, or to an extra GPIB interface connected to a
GPIB analyzer.

Console print statements are the easiest debugging statements to use, but
they are also the slowest. These statements are best suited for low-speed
testing, such as when you intend to step through the driver testing one
function at a time.

Debugging statements written to an internal trace buffer within the driver
are much faster than console print statements, and are therefore better
suited for higher speed testing of longer duration. You can retrieve the
contents of the internal trace buffer at any time by using the ibdump

extraction program, included in the NI-488DDK distribution.

You can also arrange to have the contents of the internal trace buffer
output to an unused GPIB interface as they are generated at run time.
This is another flexible option that is suitable for high-speed testing

Chapter 2 Developing Your Driver

© National Instruments Corporation 2-9 NI-488DDK Software Reference Manual

situations. This option is especially useful when debugging a problem
that is causing the system to crash (a common problem in driver
development) before the contents of the internal trace buffer can be
retrieved using ibdump .

To conditionally include the debugging statements, first set the
GPIB_DEBUG and (optionally) the GPIB_TRACE flags in the ib.c file
to 1. Once the DBG statements have been compiled into the driver, you
can use the ibpoke driver function to control the quantity and display
options of these statements at run time. The ibdump program is written in
C and can be compiled as either a separate utility or as a linkable
subroutine (suitable for use with user-level drivers) that you can call from
your application program.

Documentation of Debugging Tools
For more information about the debugging options available in a
particular version of the NI-488DDK driver, refer to the definitions at the
top of the ni_suprt.h file. For information about the ibpoke function,
refer to Chapter 4, NI-488DDK Functions. For more information about
the ibchat and ibdump programs, refer to the comments in their
respective C source files. For information about other tools and
techniques that may be available to help debug your NI-488DDK driver,
depending on your development environment, please refer to the
documentation that came with your operating system.

© National Instruments Corporation 3-1 NI-488DDK Software Reference Manual

Developing Your
Application

3
Chapter

This chapter explains how to develop a GPIB application using
NI-488DDK functions.

Using NI-488DDK Functions
NI-488DDK functions perform only rudimentary GPIB operations. These
low-level functions access the interface board directly and require you to
handle the addressing and bus management protocol. In addition to
serving as a foundation upon which you can implement higher-level
functions, these functions give you the flexibility and control to handle
situations such as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices

• Altering various low-level board configurations

• Developing non-controller applications

• Managing the bus in non-typical ways

The NI-488DDK functions are completely compatible with the
corresponding functions of standard NI-488.2 drivers from National
Instruments.

Items to Include in Your Application
Items you should include in your C application programs are as follows:

• The header file ugpib.h contains prototypes for the GPIB functions
and constants that you can use in your application.

• One or more calls to the ibfind function to obtain a unit descriptor
for each GPIB board that the application uses.

• Code to check for errors after each NI-488DDK function call.

Chapter 3 Developing Your Application

NI-488DDK Software Reference Manual 3-2 © National Instruments Corporation

• A function to handle GPIB errors. This function takes the board
offline and closes the application. If the function is declared as:

void gpiberr (char * msg); /*function prototype*/

then your application invokes it as follows:

if (ibsta & ERR) {
gpiberr("GPIB error");

}

Checking Status with Global Variables
Each NI-488DDK function updates four global variables to reflect the
status of the board that you are using. These global status variables are
the status word (ibsta), the error variable (iberr) and the count
variables (ibcnt and ibcntl). They contain useful information about
the performance of your application. Your application should check these
variables after each GPIB call. The following sections describe each of
these global variables and how you can use them in your application.

Status Word (ibsta)
All functions update a global status word, ibsta , which contains
information about the state of the GPIB and the GPIB hardware. The
value stored in ibsta is the return value of all of the NI-488DDK
functions except ibfind . You can examine various status bits in ibsta

and use that information to make decisions about continued processing. If
you check for possible errors after each call using the ibsta ERR bit,
debugging your application is much easier.

ibsta is an integer-sized value. The least significant 16 bits of ibsta

are meaningful. A bit value of one (1) indicates that a certain condition is
in effect, and a bit value of zero (0) indicates that the condition is not in
effect.

Table 3-1 shows the condition that each bit position represents and the bit
mnemonics. For a detailed explanation of each of the status conditions,
refer to Appendix B, Status Word Conditions.

Chapter 3 Developing Your Application

© National Instruments Corporation 3-3 NI-488DDK Software Reference Manual

Table 3-1. Status Word Layout

Mnemonic Bit Pos. Hex Value Description

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 END or EOS detected

SRQI 12 1000 SRQ interrupt received

CMPL 8 100 I/O completed

LOK 7 80 Lockout State

REM 6 40 Remote State

CIC 5 20 Controller-In-Charge

ATN 4 10 Attention is asserted

TACS 3 8 Talker

LACS 2 4 Listener

DTAS 1 2 Device Trigger State

DCAS 0 1 Device Clear State

The application header file ugpib.h included on your distribution
medium defines each of the ibsta status bits. You can test for an ibsta

status bit being set using the bitwise and operator (& in C/C++). For
example, the ibsta ERR bit is bit 15 of ibsta . To check for a GPIB
error, use the following statement after each GPIB call as shown:

if (ibsta & ERR)
printf("GPIB error encountered");

Error Variable (iberr)
If the ERR bit is set in ibsta , a GPIB error has occurred. When an error
occurs, the error type is specified by the integer iberr . To check for a
GPIB error, use the following statement after each GPIB call:

if (ibsta & ERR)
printf("GPIB error %d encountered", iberr);

Note: The value in iberr is meaningful as an error type only when the
ERR bit is set in ibsta , indicating that an error has occurred.

Chapter 3 Developing Your Application

NI-488DDK Software Reference Manual 3-4 © National Instruments Corporation

For more information on error codes and solutions refer to the Debugging
Considerations section later in this chapter, or Appendix C, Error Codes
and Solutions.

Count Variables (ibcnt and ibcntl)
The count variables are updated after each read, write, or command
function. ibcnt is an integer value and ibcntl is a long integer value.
As implemented on most modern systems today, ibcnt and ibcntl are
both 32-bit integers. On some older systems, such as MS-DOS, ibcnt is
a 16-bit integer; on some newer systems, ibcntl is a 64-bit integer. For
cross-platform compatibility, all applications should use ibcntl . If you
are reading data, the count variables indicate the number of bytes read. If
you are sending data or commands, the count variables reflect the number
of bytes sent.

In your application you can use the count variables to null-terminate an
ASCII string of data received from an instrument. For example, if data is
received in an array of characters, you can use ibcntl to null-terminate
the array and print the measurement on the screen as follows:

char rdbuf[512];
ibrd (ud, rdbuf, 20L);
if (!(ibsta & ERR)){

rdbuf[ibcntl] = '\0';
printf ("Read: %s\n", rdbuf);

}
else {

error();
}

Compiling and Linking Your Application
To access the functions in the NI-488DDK driver from your application,
you must link your application to the C language interface defined by the
cib.c file. If you are using a user-level implementation of the DDK
driver, in most cases you must also link your application to the low-level
driver module itself, defined by the ib.c file.

Chapter 3 Developing Your Application

© National Instruments Corporation 3-5 NI-488DDK Software Reference Manual

The steps for compiling and linking your application program vary
depending on your operating system and development environment. For
example, the commands you might use to build and run an application on
a UNIX-based system with a kernel-level driver are as follows:

cc my_application.c cib.c -o my_application
my_application

Alternatively, if many applications will be using the NI-488DDK driver
on the sample UNIX system, you can compile the cib.c file separately
and place it in a library for all applications to use with the following
commands:

cc -c cib.c
ar r /usr/lib/libgpib.a cib.o
cc my_application.c -lgpib -o my_application
my_application

To access the routines in the sample IEEE 488.2 application library on
the UNIX-based system, you would compile and link the ni4882.c file
to your application as follows:

cc my_application.c ni4882.c -lgpib -o my_application
my_application

As with the standard cib module, if you desired to make the IEEE 488.2
library available to a number of applications, you could compile and
archive the ni4882.c file in a library, rather than compiling the C source
file with your application each time.

For specific instructions on the compiling and linking options available
on your particular system, refer to the documentation that came with the
system.

Debugging Considerations
This section contains typical errors you may encounter and some
considerations for debugging your application.

Using the Global Status Variables
After each function call to your NI-488DDK driver, ibsta , iberr ,
ibcnt , and ibcntl are updated before the call returns to your
application. You should check for an error after each GPIB call. Refer to
the Checking Status with Global Variables section earlier in this chapter

Chapter 3 Developing Your Application

NI-488DDK Software Reference Manual 3-6 © National Instruments Corporation

for more information about how to use these variables within your
program to automatically check for errors.

After you determine which GPIB call is failing and note the
corresponding values of the global variables, refer to Appendix B, Status
Word Conditions, and Appendix C, Error Codes and Solutions. These
appendices can help you interpret the state of the driver.

Configuration Errors
Some applications require customized configuration of the GPIB driver.
For example, you might want to terminate reads on a special
end-of-string character, or you might require secondary addressing. In
these cases, you can temporarily reconfigure the driver while your
application is running using the ibeos and ibsad functions.

Refer to the descriptions of these functions and others in Chapter 4,
NI-488DDK Functions, for more information.

Timing Errors
In some cases, your application might fail because it is issuing the
NI-488DDK calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incomplete data.

A well behaved IEEE 488 device should hold off handshaking and set the
appropriate transfer rate. If your device is not well behaved, you can test
for and resolve the timing error by single-stepping through your program
and inserting finite delays between each GPIB call. One way to do this is
to have your device communicate its status whenever possible. Although
this method is not possible with many devices, it is usually the best
option. Your delays are controlled by the device and your application can
adjust itself and work independently on any platform. Other delay
mechanisms might cause varying delay times on different platforms.

Communication Errors

Repeat Addressing
Devices adhering to the IEEE 488.2 standard should remain in their
current state until specific commands are sent across the GPIB to change
their state. However, some devices require GPIB addressing before any
GPIB activity. Therefore, you might need to make additional calls to

Chapter 3 Developing Your Application

© National Instruments Corporation 3-7 NI-488DDK Software Reference Manual

ibcmd in your application to perform repeat addressing if your device
does not remain in its currently addressed state.

Termination Method
You should learn the data termination method that your devices use. By
default, your NI-488DDK software sends EOI on writes and terminates
reads on EOI or a specific byte count. If you send a command string to
your device and it does not respond, it might be because it does not
recognize the end of the command. You might need to send a termination
message such as CR LF after a write command as follows:

ibwrt(ud,"COMMAND\x0D\x0A",9);

© National Instruments Corporation 4-1 NI-488DDK Software Reference Manual

NI-488DDK Functions
4

Chapter

This chapter lists the NI-488DDK functions and describes the purpose, format, input and
output parameters, and possible errors for each function.

Function Names
The functions in this chapter are listed alphabetically.

Purpose
Each function description includes a brief statement of the purpose of the function.

Format
The format section describes the format of each function in the C programming language.

Input and Output
The input and output parameters for each function are listed. Function Return describes the
return value of the function.

Description
The description section gives details about the purpose and effect of each function.

Examples
Some function descriptions include sample code showing how to use the function. For
more detailed and complete examples, refer to the source code support files ibchat.c and
ni4882.c that are included with your NI-488DDK software in the util/ directory.

Possible Errors
Each function description includes a list of errors that could occur when it is invoked.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-2 © National Instruments Corporation

List of NI-488DDK Functions
The following table contains an alphabetical list of the NI-488DDK functions.

Table 4-1. NI-488DDK Functions

Function Purpose

ibcac Become Active Controller

ibcmd Send GPIB commands

ibeos Configure the end-of-string (EOS) termination mode or character

ibeot Enable or disable the automatic assertion of the GPIB EOI line at the
end of write I/O operations

ibfind Open and initialize a GPIB board

ibgts Go from Active Controller to Standby

ibist Set or clear the board individual status bit for parallel polls

iblines Return the status of the eight GPIB control lines

ibln Check for the presence of a device on the bus

ibloc Go to local

ibonl Place the interface board online or offline

ibpad Change the primary address

ibpoke Change internal driver characteristics

ibppc Parallel poll configure

ibrd Read data into a user buffer

ibrpp Conduct a parallel poll

ibrsc Request or release system control

ibrsv Request service and change the serial poll status byte

ibsad Change or disable the secondary address

ibsic Assert interface clear

ibsre Set or clear the Remote Enable (REN) line

ibtmo Change or disable the I/O timeout period

ibwait Wait for GPIB events

ibwrt Write data from a user buffer

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-3 NI-488DDK Software Reference Manual

IBCAC IBCAC

Purpose
Become Active Controller.

Format

int ibcac (int ud, int v)

Input
ud A board unit descriptor
v Determines if control is to be taken asynchronously or

synchronously

Output
Function Return The value of ibsta

Description
Using ibcac , the designated GPIB board attempts to become the Active Controller by
asserting ATN. If v is zero, the GPIB board takes control asynchronously; if v is non-zero,
the GPIB board takes control synchronously. Before you call ibcac , the GPIB board must
already be CIC. To make the board CIC, use the ibsic function.

To take control synchronously, the GPIB board attempts to assert the ATN signal without
corrupting transferred data. If this is not possible, the board takes control asynchronously.

To take control asynchronously, the GPIB board asserts ATN immediately without regard
for any data transfer currently in progress.

Most applications do not need to use ibcac . Functions that require ATN to be asserted,
such as ibcmd , do so automatically.

Possible Errors
EARG ud is valid but does not refer to an interface board.
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-4 © National Instruments Corporation

IBCMD IBCMD

Purpose
Send GPIB commands.

Format

int ibcmd (int ud, void *cmdbuf, long count)

Input
ud A board unit descriptor
cmdbuf Buffer of command bytes to send
count Number of command bytes to send

Output
Function Return The value of ibsta

Description
ibcmd sends count bytes from cmdbuf over the GPIB as command bytes (interface
messages). The number of command bytes transferred is returned in the global variable,
ibcntl . Refer to Appendix A, Multiline Interface Messages, for a table of the defined
interface messages.

Command bytes configure the state of the GPIB, such as addressing devices to listen
or talk.

Possible Errors
EABO The timeout period expired before all of the command bytes were sent.
EARG ud is valid but does not refer to an interface board.
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.
ENOL No Listeners are on the GPIB.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-5 NI-488DDK Software Reference Manual

IBEOS IBEOS

Purpose
Configure the end-of-string (EOS) termination mode or character.

Format

int ibeos (int ud, int v)

Input
ud Board descriptor
v EOS mode and character information

Output
Function Return The value of ibsta

Description
ibeos configures the EOS termination mode or EOS character for the board. The
parameter v describes the new end-of-string (EOS) configuration to use. If v is zero, then
the EOS configuration is disabled. Otherwise, the low byte is the EOS character and the
upper byte contains flags which define the EOS mode.

Note: Defining an EOS byte does not cause the driver to automatically send
that byte at the end of write I/O. Your application is responsible for
placing the EOS byte at the end of the data strings that it defines.

Table 4-2 describes the different EOS configurations and the corresponding values of v . If
no error occurs during the call, the value of the previous EOS setting is returned in iberr .

Table 4-2. EOS Configurations

Value of v

Bit Configuration High Byte Low Byte

A Terminate read when EOS is detected. 00000100 EOS character

B Set EOI with EOS on write function. 00001000 EOS character

C Compare all 8 bits of EOS byte rather than
low 7 bits (all read and write functions).

00010000 EOS character

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-6 © National Instruments Corporation

IBEOS IBEOS
(Continued)

Configuration bits A and C determine how to terminate read I/O operations. If bit A is set
and bit C is clear, then a read ends when a byte that matches the low seven bits of the EOS
character is received. If bits A and C are both set, then a read ends when a byte that
matches all eight bits of the EOS character is received.

Configuration bits B and C determine when a write I/O operation asserts the GPIB EOI
line. If bit B is set and bit C is clear, then EOI is asserted when the written character
matches the low seven bits of the EOS character. If bits B and C are both set, then EOI is
asserted when the written character matches all eight bits of the EOS character.

For more information on the termination of I/O operations, refer to Chapter 5, GPIB
Programming Techniques.

Examples

ibeos (ud, 0x140A); /* Configure the software to end reads on

 newline character (hex 0A) for the unit

 descriptor, ud */

ibeos (ud, 0x180A); /* Configure the software to assert the GPIB

 EOI line whenever the newline character

 (hex 0A) is written out by the unit

 descriptor, ud */

Possible Errors
EARG The high byte of v contains invalid bits.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-7 NI-488DDK Software Reference Manual

IBEOT IBEOT

Purpose
Enable or disable the automatic assertion of the GPIB EOI line at the end of write I/O
operations.

Format

int ibeot (int ud, int v)

Input
ud Board descriptor
v Enables or disables the end of transmission assertion of EOI

Output
Function Return The value of ibsta

Description
ibeot enables or disables the assertion of the EOI line at the end of write I/O operations
for the board ud describes. If v is non-zero, then EOI is asserted when the last byte of a
GPIB write is sent. If v is zero, then nothing occurs when the last byte is sent. If no error
occurs during the call, then the previous value of EOT is returned in iberr .

For more information on the termination of I/O operations, refer to Chapter 5, GPIB
Programming Techniques.

Possible Errors
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-8 © National Instruments Corporation

IBFIND IBFIND

Purpose
Open and initialize a GPIB board descriptor.

Format

int ibfind (char *udname)

Input
udname A GPIB board name

Output
Function Return The board descriptor, or -1

Description
ibfind acquires a descriptor for a GPIB board; this board descriptor can be used in
subsequent NI-488DDK functions.

ibfind performs the equivalent of an ibonl 1 to initialize the board descriptor. The unit
descriptor that ibfind returns remains valid until you use ibonl 0 to put the board
offline.

If ibfind is unable to get a valid descriptor, -1 is returned; the ERR bit is set in ibsta

and iberr contains EDVR.

Possible Errors
EDVR Either udname is not recognized as a board name or the NI-488DDK driver is

not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-9 NI-488DDK Software Reference Manual

IBGTS IBGTS

Purpose
Go from Active Controller to Standby.

Format

int ibgts (int ud, int v)

Input
ud Board descriptor
v Determines whether to perform acceptor handshaking

Output
Function Return The value of ibsta

Description
ibgts causes the GPIB board at ud to go to Standby Controller and the GPIB ATN line to
be unasserted. If v is non-zero, acceptor handshaking or shadow handshaking is performed
until END occurs or until ATN is reasserted by a subsequent ibcac call. With this option,
the GPIB board can participate in data handshake as an acceptor without actually reading
data. If END is detected, the interface board enters a Not Ready For Data (NRFD)
handshake holdoff state which results in hold off of subsequent GPIB transfers. If v is 0,
no acceptor handshaking or holdoff is performed.

Before performing an ibgts with shadow handshake, call the ibeos function to establish
proper EOS modes.

For details on the IEEE-488.1 handshake protocol, refer to the ANSI/IEEE Standard
488.1-1987 document.

Possible Errors
EADR v is non-zero, and either ATN is low or the interface board is a Talker or

Listener.
EARG ud is valid but does not refer to an interface board.
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-10 © National Instruments Corporation

IBIST IBIST

Purpose
Set or clear the board individual status bit for parallel polls.

Format

int ibist (int ud, int v)

Input
ud Board descriptor
v Indicates whether to set or clear the ist bit

Output
Function Return The value of ibsta

Description
ibist sets the interface board ist (individual status) bit according to v . If v is zero, the
ist bit is cleared; if v is non-zero, the ist bit is set. The previous value of the ist bit is
returned in iberr .

For more information on parallel polling, refer to Chapter 5, GPIB Programming
Techniques.

Possible Errors
EARG ud is valid but does not refer to an interface board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-11 NI-488DDK Software Reference Manual

IBLINES IBLINES

Purpose
Return the status of the eight GPIB control lines.

Format

int iblines (int ud, short *clines)

Input
ud Board descriptor

Output
clines Returns GPIB control line state information
Function Return The value of ibsta

Description
iblines returns the state of the GPIB control lines in clines . The low-order byte (bits 0
through 7) of clines contains a mask indicating the capability of the GPIB interface board
to sense the status of each GPIB control line. The upper byte (bits 8 through 15) contains
the GPIB control line state information. The following is a pattern of each byte.

7 6 5 4 3 2 1 0

EOI ATN SRQ REN IFC NRFD NDAC DAV

To determine if a GPIB control line is asserted, first check the appropriate bit in the lower
byte to determine if the line can be monitored. If the line can be monitored (indicated by a
1 in the appropriate bit position), then check the corresponding bit in the upper byte. If the
bit is set (1), the corresponding control line is asserted. If the bit is clear (0), the control line
is unasserted.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-12 © National Instruments Corporation

IBLINES IBLINES
(Continued)

Example

short lines;

iblines (ud, &lines);

if (lines & ValidREN) { /* check to see if REN is asserted */

if (lines & BusREN) {

printf ("REN is asserted");

}

}

Possible Errors
EARG ud is valid but does not refer to an interface board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-13 NI-488DDK Software Reference Manual

IBLN IBLN

Purpose
Check for the presence of a device on the bus.

Format

int ibln (int ud, int pad, int sad, short *listen)

Input
ud Board descriptor
pad The primary GPIB address of the device
sad The secondary GPIB address of the device

Output
listen Indicates if a device is present or not
Function Return The value of ibsta

Description
ibln determines whether there is a listening device at the GPIB address designated by the
pad and sad parameters. If a Listener is detected, a non-zero value is returned in listen .
If no Listener is found, zero is returned.

The pad parameter can be any valid primary address (a value between 0 and 30). The sad

parameter can be any valid secondary address (a value between 96 to 126), or one of the
constants NO_SAD or ALL_SAD. The constant NO_SAD designates that no secondary address
is to be tested (only a primary address is tested). The constant ALL_SAD designates that all
secondary addresses are to be tested.

Possible Errors
EARG Either the pad or sad argument is invalid.
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-14 © National Instruments Corporation

IBLOC IBLOC

Purpose
Go to Local.

Format

int ibloc (int ud)

Input
ud Board descriptor

Output
Function Return The value of ibsta

Description
ibloc places the board in local mode if it is not in a lockout state. The board is in a
lockout state if LOK appears in the status word ibsta . If the board is in a lockout state, the
call has no effect.

The ibloc function is used to simulate a front panel RTL (Return to Local) switch if the
computer is used as an instrument.

Possible Errors
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-15 NI-488DDK Software Reference Manual

IBONL IBONL

Purpose
Place the interface board online or offline.

Format

int ibonl (int ud, int v)

Input
ud Board descriptor
v Indicates whether the board is to be taken online or offline

Output
Function Return The value of ibsta

Description
ibonl resets the board and places all its software configuration parameters in their
pre-configured state. In addition, if v is zero, the interface board is taken offline. If v is
non-zero, the interface board is left operational, or online.

If an interface board is taken offline, the board descriptor (ud) is no longer valid. You must
execute an ibfind to access the board again.

Possible Errors
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-16 © National Instruments Corporation

IBPAD IBPAD

Purpose
Change the primary address.

Format

int ibpad (int ud, int v)

Input
ud Board descriptor
v GPIB primary address

Output
Function Return The value of ibsta

Description
ibpad sets the primary GPIB address of the board to v , an integer ranging from 0 to 30.
If no error occurs during the call, then iberr contains the previous GPIB primary address.

Possible Errors
EARG v is not a valid primary GPIB address; it must be in the range 0 to 30.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-17 NI-488DDK Software Reference Manual

IBPOKE IBPOKE

Purpose
Change internal driver characteristics.

Format

int ibpoke (int ud, int option, int v)

Input
ud Board descriptor
option A parameter that selects the characteristic to be changed
v The value to which the selected characteristic is to be changed

Output
Function Return The value of ibsta

Description
ibpoke modifies miscellaneous internal characteristics within the NI-488DDK driver,
such as turning on or off certain types of debugging statements. The operations that can
be performed with ibpoke can vary with different NI-488 drivers. This function is
intended for driver developer use only and should generally not be used in end-user
application development. For these reasons, ibpoke is not documented in standard NI-488
manual sets.

For the specific options and values supported by a particular version of driver, refer to the
source code for ibpoke in the files ni488.c and ni_suprt.c .

Examples

ibpoke (ud, 1, 1); /* Turn all driver debugging statements ON */

ibpoke (ud, 1, 0); /* Turn all driver debugging statements OFF */

Possible Errors
EARG Either option or v is invalid.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-18 © National Instruments Corporation

IBPPC IBPPC

Purpose
Parallel poll configure.

Format

int ibppc (int ud, int v)

Input
ud Board descriptor
v Parallel poll enable/disable value

Output
Function Return The value of ibsta

Description
ibppc performs a local parallel poll configuration on the interface board using the parallel
poll configuration value v . Valid parallel poll messages are 96 to 126 (hex 60 to hex 7E) or
zero to send PPD. If no error occurs during the call, then iberr contains the previous value
of the local parallel poll configuration.

For more information on parallel polling, refer to Chapter 5, GPIB Programming
Techniques.

Possible Errors
EARG v does not contain a valid PPE or PPD message.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-19 NI-488DDK Software Reference Manual

IBRD IBRD

Purpose
Read data into a user buffer.

Format

int ibrd (int ud, void *rdbuf, long count)

Input
ud Board descriptor
count Number of bytes to be read from the GPIB

Output
rdbuf Address of buffer into which data is read
Function Return The value of ibsta

Description
ibrd reads up to count bytes of data and places the data into the buffer specified by
rdbuf . ibrd assumes that the GPIB is already properly addressed. The operation
terminates normally when count bytes have been received or END is received. The
operation terminates with an error if the transfer could not complete within the timeout
period or, if the board is not CIC, the CIC sends a Device clear on the GPIB. The actual
number of bytes transferred is returned in the global variable ibcntl .

Possible Errors
EABO Either count bytes or END was not received within the timeout period or a

Device Clear message was received after the read operation began.
EADR The GPIB is not correctly addressed; use ibcmd to address the GPIB.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-20 © National Instruments Corporation

IBRPP IBRPP

Purpose
Conduct a parallel poll.

Format

int ibrpp (int ud, char *ppr)

Input
ud Board descriptor

Output
ppr Parallel poll response byte
Function Return The value of ibsta

Description
ibrpp parallel polls all the devices on the GPIB. The result of this poll is returned in ppr .

For more information on parallel polling, refer to Chapter 5, GPIB Programming
Techniques.

Possible Errors
ECIC The interface board is not Controller-In-Charge.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-21 NI-488DDK Software Reference Manual

IBRSC IBRSC

Purpose
Request or release system control.

Format

int ibrsc (int ud, int v)

Input
ud Board descriptor
v Determines if system control is to be requested or released

Output
Function Return The value of ibsta

Description
ibrsc requests or releases the capability to send Interface Clear (IFC) and Remote Enable
(REN) messages. If v is zero, the board releases system control, and functions requiring
System Controller capability are not allowed. If v is non-zero, functions requiring System
Controller capability are subsequently allowed. If no error occurs during the call, then
iberr contains the previous System Controller state of the board.

Possible Errors
EARG ud is a valid descriptor but does not refer to a board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-22 © National Instruments Corporation

IBRSV IBRSV

Purpose
Request service and change the serial poll status byte.

Format

int ibrsv (int ud, int v)

Input
ud Board descriptor
v Serial poll status byte

Output
Function Return The value of ibsta

Description
ibrsv is used to request service from the Controller and to provide the Controller with an
application-dependent status byte when the Controller serial polls the GPIB board.

The value v is the status byte that the GPIB board returns when serial polled by the
Controller-In-Charge. If bit 6 (hex 40) is set in v , the GPIB board requests service from the
Controller by asserting the GPIB SRQ line. When ibrsv is called and an error does not
occur, the previous status byte is returned in iberr .

Possible Errors
EARG ud is a valid descriptor but does not refer to a board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-23 NI-488DDK Software Reference Manual

IBSAD IBSAD

Purpose
Change or disable the secondary address.

Format

int ibsad (int ud, int v)

Input
ud Board descriptor
v GPIB secondary address

Output
Function Return The value of ibsta

Description
ibsad changes the secondary GPIB address of the given board to v , an integer in the range
96 to 126 (hex 60 to hex 7E) or zero. If v is zero, secondary addressing is disabled. If no
error occurs during the call, then the previous value of the GPIB secondary address is
returned in iberr .

Possible Errors
EARG v is non-zero and outside the legal range 96 to 126.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-24 © National Instruments Corporation

IBSIC IBSIC

Purpose
Assert interface clear.

Format

int ibsic (int ud)

Input
ud Board descriptor

Output
Function Return The value of ibsta

Description
ibsic asserts the GPIB interface clear (IFC) line for at least 100 µs if the GPIB board is
System Controller. This initializes the GPIB and makes the interface board CIC and Active
Controller with ATN asserted.

The IFC signal resets only the GPIB interface functions of bus devices and not the internal
device functions. Consult your device documentation to determine how to reset the internal
functions of your device.

Possible Errors
EARG ud is a valid descriptor but does not refer to a board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.
ESAC The board does not have System Controller capability.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-25 NI-488DDK Software Reference Manual

IBSRE IBSRE

Purpose
Set or clear the Remote Enable line.

Format

int ibsre (int ud, int v)

Input
ud Board descriptor
v Indicates whether to set or clear the REN line

Output
Function Return The value of ibsta

Description
If v is non-zero, the GPIB Remote Enable (REN) line is asserted. If v is zero, REN is
unasserted. The previous value of REN is returned in iberr .

Devices use REN to choose between local and remote modes of operation. A device should
not actually enter remote mode until it receives its listen address.

Possible Errors
EARG ud is a valid descriptor but does not refer to a board.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.
ESAC The board does not have System Controller capability.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-26 © National Instruments Corporation

IBTMO IBTMO

Purpose
Change or disable the timeout period.

Format

int ibtmo (int ud, int v)

Input
ud Board descriptor
v Timeout duration code

Output
Function Return The value of ibsta

Description
ibtmo sets the timeout period of the board to v . The timeout period is used to select the
maximum duration allowed for an I/O operation (for example, ibrd and ibwrt) or for an
ibwait operation with TIMO in the wait mask. If the operation does not complete before
the timeout period elapses, then the operation is aborted and TIMO is returned in ibsta .
See Table 4-3 for a list of valid timeout values. These timeout values represent the
minimum timeout period. The actual period may be longer.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-27 NI-488DDK Software Reference Manual

IBTMO IBTMO
(Continued)

Table 4-3. Timeout Code Values

Constant Value of v Minimum Timeout

TNONE 0 disabled/no timeout

T10us 1 10 µs

T30us 2 30 µs

T100us 3 100 µs

T300us 4 300 µs

T1ms 5 1 ms

T3ms 6 3 ms

T10ms 7 10 ms

T30ms 8 30 ms

T100ms 9 100 ms

T300ms 10 300 ms

T1s 11 1 s

T3s 12 3 s

T10s 13 10 s

T30s 14 30 s

T100s 15 100 s

T300s 16 300 s

T1000s 17 1000 s

Possible Errors
EARG v is invalid.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-28 © National Instruments Corporation

IBWAIT IBWAIT

Purpose
Wait for GPIB events.

Format

int ibwait (int ud, int mask)

Input
ud Board descriptor
mask Bit mask of GPIB events to wait for

Output
Function Return The value of ibsta

Description
ibwait monitors the events that mask specifies and delays processing until one or more of
the events occurs. If the wait mask is zero, ibwait returns immediately with the updated
ibsta status word. If TIMO is set in the wait mask, ibwait returns when the timeout
period has elapsed, if one or more of the other specified events have not already occurred.
If TIMO is not set in the wait mask, then ibwait waits indefinitely for one or more of the
specified events to occur. The existing ibwait mask bits are identical to the ibsta bits,
and they are described in Table 4-4. You can configure the timeout period using the ibtmo

function.

Chapter 4 NI-488DDK Functions

© National Instruments Corporation 4-29 NI-488DDK Software Reference Manual

IBWAIT IBWAIT
(Continued)

Table 4-4. Wait Mask Layout

Mnemonic Bit
Pos.

Hex Value Description

TIMO 14 4000 Use the timeout period (see ibtmo) to limit
the wait period

END 13 2000 END or EOS is detected

SRQI 12 1000 SRQ is asserted

CMPL 8 100 I/O completed

LOK 7 80 GPIB board is in Lockout State

REM 6 40 GPIB board is in Remote State

CIC 5 20 GPIB board is CIC

ATN 4 10 Attention is asserted

TACS 3 8 GPIB board is Talker

LACS 2 4 GPIB board is Listener

DTAS 1 2 GPIB board is in Device Trigger State

DCAS 0 1 GPIB board is in Device Clear State

Possible Errors
EARG The bit set in mask is invalid.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.

Chapter 4 NI-488DDK Functions

NI-488DDK Software Reference Manual 4-30 © National Instruments Corporation

IBWRT IBWRT

Purpose
Write data from a user buffer.

Format

int ibwrt (int ud, void *wrtbuf, long count)

Input
ud Board descriptor
wrtbuf Address of the buffer containing the bytes to write
count Number of bytes to be written

Output
Function Return The value of ibsta

Description

ibwrt writes count bytes of data from the buffer specified by wrtbuf ; ibwrt assumes
that the GPIB is already properly addressed. The operation terminates normally when
count bytes have been sent. The operation terminates with an error if count bytes could
not be sent within the timeout period or, if the board is not CIC, the CIC sends Device
Clear on the GPIB. The actual number of bytes transferred is returned in the global variable
ibcntl .

Possible Errors
EABO Either count bytes were not sent within the timeout period, or a Device Clear

message was received after the write operation began.
EADR The GPIB is not correctly addressed; use ibcmd to address the GPIB.
EDVR Either ud is invalid or the NI-488DDK driver is not installed.
ENEB The interface board is not installed or is not properly configured.
ENOL No Listeners were detected on the bus.

© National Instruments Corporation 5-1 NI-488DDK Software Reference Manual

GPIB Programming
Techniques

5
Chapter

This chapter describes techniques for using some NI-488DDK functions
in your application.

For more detailed information about each function, refer to Chapter 4,
NI-488DDK Functions.

Termination of Data Transfers
GPIB data transfers are terminated either when the GPIB EOI line is
asserted with the last byte of a transfer or when a preconfigured
end-of-string (EOS) character is transmitted. By default, the NI-488DDK
driver asserts EOI with the last byte of writes and the EOS modes are
disabled.

You can use the ibeot function to enable or disable the end of
transmission (EOT) mode. If EOT mode is enabled, the NI-488DDK
driver asserts the GPIB EOI line when the last byte of a write is sent out
on the GPIB. If it is disabled, the EOI line is not asserted with the last
byte of a write.

You can use the ibeos function to enable, disable, or configure the EOS
modes. EOS mode configuration includes the following information:

• A 7-bit or 8-bit EOS byte

• EOS comparison method—This indicates whether the EOS byte has
seven or eight significant bits. For a 7-bit EOS byte, the eighth bit of
the EOS byte is ignored.

• EOS write method—If you enable this, the NI-488DDK driver
automatically asserts the GPIB EOI line when the EOS byte is
written to the GPIB. If the buffer passed into an ibwrt call contains
five occurrences of the EOS byte, the EOI line is asserted as each of
the five EOS bytes are written to the GPIB. If an ibwrt buffer does

Chapter 5 GPIB Programming Techniques

NI-488DDK Software Reference Manual 5-2 © National Instruments Corporation

not contain an occurrence of the EOS byte, the EOI line is not
asserted (unless the EOT mode is enabled, in which case the EOI line
is asserted with the last byte of the write).

• EOS read method—If you enable this, the NI-488DDK driver
terminates ibrd calls when the EOS byte is detected on the GPIB or
when the GPIB EOI line is asserted or when the specified count is
reached. If you disable the EOS read method, ibrd calls terminate
only when the GPIB EOI line is asserted or the specified count has
been read.

Waiting for GPIB Conditions
You can use the ibwait function to obtain the current ibsta value or to
suspend your application until a specified condition occurs on the GPIB.
If you use ibwait with a parameter of zero, it immediately updates
ibsta and returns. If you want to use ibwait to wait for one or more
events to occur, then pass a wait mask to the function. The wait mask
should always include the TIMO event; otherwise, your application is
suspended indefinitely until one of the wait mask events occurs.

Talker/Listener Applications
Although designed for Controller-In-Charge applications, you can also
use the NI-488DDK software in most non-Controller situations. These
situations are known as Talker/Listener applications because the interface
board is not the GPIB Controller.

A Talker/Listener application typically uses ibwait with a mask of 0 to
monitor the status of the interface board. Then, based on the status bits
set in ibsta , the application takes whatever action is appropriate. For
example, the application could monitor the status bits TACS (Talker
Active State) and LACS (Listener Active State) to determine when to
send data to or receive data from the Controller. The application could
also monitor the DCAS (Device Clear Active State) and DTAS (Device
Trigger Active State) bits to determine if the Controller has sent the
device clear (DCL or SDC) or trigger (GET) messages to the interface
board. If the application detects a device clear from the Controller, it
might reset the internal state of message buffers. If it detects a trigger
message from the Controller, the application might begin an operation
such as taking a voltage reading if the application is actually acting as a
voltmeter.

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-3 NI-488DDK Software Reference Manual

Serial Polling
You can use serial polling to obtain specific information from GPIB
devices when they request service. When the GPIB SRQ line is asserted,
it signals the Controller that a service request is pending. The Controller
must then determine which device asserted the SRQ line and respond
accordingly. The most common method for SRQ detection and servicing
is the serial poll. This section describes how you can set up your
application to detect and respond to service requests from GPIB devices.

Service Requests from IEEE 488 Devices
IEEE 488 devices request service from the GPIB Controller by asserting
the GPIB SRQ line. When the Controller acknowledges the SRQ, it serial
polls each open device on the bus to determine which device requested
service. Any device requesting service returns a status byte with bit 6 set
and then unasserts the SRQ line. Devices not requesting service return a
status byte with bit 6 cleared. Manufacturers of IEEE 488 devices use
lower order bits to communicate the reason for the service request or to
summarize the state of the device.

Service Requests from IEEE 488.2 Devices
The IEEE 488.2 standard refined the bit assignments in the status byte. In
addition to setting bit 6 when requesting service, IEEE 488.2 devices also
use two other bits to specify their status. Bit 4, the Message Available bit
(MAV), is set when the device is ready to send previously queried data.
Bit 5, the Event Status bit (ESB), is set if one or more of the enabled
IEEE 488.2 events occurs. These events include power-on, user request,
command error, execution error, device dependent error, query error,
request control, and operation complete. The device can assert SRQ when
ESB or MAV are set, or when a manufacturer-defined condition occurs.

SRQ and Serial Polling with NI-488DDK Functions
The 488.2 application library included with the NI-488DDK driver
contains some high-level routines that you can use to conduct SRQ
servicing and serial polling. Routines pertinent to SRQ servicing and
serial polling are ni4882_ReadStatusByte , ni4882_TestSRQ , and
ni4882_WaitSRQ .

ni4882_ReadStatusByte serial polls a single device and returns its
status byte.

Chapter 5 GPIB Programming Techniques

NI-488DDK Software Reference Manual 5-4 © National Instruments Corporation

ni4882_TestSRQ determines whether the SRQ line is asserted or
unasserted, and returns to the caller immediately.

ni4882_WaitSRQ is similar to ni4882_TestSRQ , except that
ni4882_WaitSRQ suspends the application until either SRQ is asserted
or the timeout period is exceeded.

You can also use the IEEE 488.2 routines mentioned in this section to
construct your own SRQ servicing routines using the low-level functions
of the NI-488DDK driver. Refer to the file ni4882.c for more
information.

Parallel Polling
Although parallel polling is not widely used, it is a useful method for
obtaining the status of more than one device at the same time. The
advantage of parallel polling is that a single parallel poll can easily check
up to eight individual devices at once. In comparison, eight separate
serial polls would be required to check eight devices for their serial poll
response bytes. The value of the individual status bit (ist) determines
the parallel poll response.

Implementing a Parallel Poll with NI-488DDK Functions
Follow these steps to implement parallel polling using NI-488DDK
functions. Each step contains example code.

1. Configure the device for parallel polling using the ibcmd function,
unless the device can configure itself for parallel polling.

Parallel poll configuration requires an 8-bit value to designate the
data line number, the ist sense, and whether or not the function
configures or unconfigures the device for the parallel poll. The bit
pattern is as follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling for
that particular device.

S is 1 if the device is to assert the assigned data line when ist = 1,
and 0 if the device is to assert the assigned data line when ist = 0.

D2 through D0 determine the number of the assigned data line. The
physical line number is the binary line number plus one. For
example, DIO3 has a binary bit pattern of 010.

Chapter 5 GPIB Programming Techniques

© National Instruments Corporation 5-5 NI-488DDK Software Reference Manual

The following example code configures a device at primary
address 3 for parallel polling using NI-488DDK functions. The
device asserts DIO7 if its ist bit = 0, therefore, 0110 0110 (hex 66)
is the parallel poll configuration byte.

#include "ugpib.h"

char ppr;

ud = ibfind("gpib0");

ibsic(ud);

ibcmd(ud, "?#\x05\x66", 4);

If the GPIB interface board configures itself for a parallel poll, you
should use the ibppc function. Pass the board unit descriptor value
as the first argument in ibppc . In addition, if the individual status bit
(ist) of the board needs to be changed, use the ibist function.

In the following example, the GPIB board is to configure itself to
participate in a parallel poll. It asserts DIO5 when ist = 1 if a
parallel poll is conducted.

ibppc(ud, 0x6C);

ibist(ud, 1);

2. Conduct the parallel poll using ibrpp and check the response for a
certain value. The following example code performs the parallel poll
and compares the response to hex 10, which corresponds to DIO5. If
that bit is set, the ist of the device is 1.

ibrpp(ud, &ppr);

if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling with ibcmd . Notice that
any value having the parallel poll disable bit set (bit 4) in the bit
pattern disables the configuration, so you can use any value between
hex 70 and 7E.

ibcmd(ud,"?#\x05\x70", 4);

© National Instruments Corporation A-1 NI-488DDK Software Reference Manual

Multiline Interface
Messages

A
Appendix

This appendix contains a multiline interface message reference list, which
describes the mnemonics and messages that correspond to the interface
functions. These multiline interface messages are sent and received with
ATN asserted.

For more information about these messages, refer to the ANSI/IEEE
Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation.

Appendix A Multiline Interface Messages

NI-488DDK Software Reference Manual A-2 © National Instruments Corporation

Table A-1. Multiline Interface Messages

Hex Dec ASCII Msg Hex Dec ASCII Msg

00 0 NUL 20 32 SP MLA0

01 1 SOH GTL 21 33 ! MLA1

02 2 STX 22 34 " MLA2

03 3 ETX 23 35 # MLA3

04 4 EOT SDC 24 36 $ MLA4

05 5 ENQ PPC 25 37 % MLA5

06 6 ACK 26 38 & MLA6

07 7 BEL 27 39 ' MLA7

08 8 BS GET 28 40 (MLA8

09 9 HT TCT 29 41) MLA9

0A 10 LF 2A 42 * MLA10

0B 11 VT 2B 43 + MLA11

0C 12 FF 2C 44 , MLA12

0D 13 CR 2D 45 - MLA13

0E 14 SO 2E 46 . MLA14

0F 15 SI 2F 47 / MLA15

10 16 DLE 30 48 0 MLA16

11 17 DC1 LLO 31 49 1 MLA17

12 18 DC2 32 50 2 MLA18

13 19 DC3 33 51 3 MLA19

14 20 DC4 DCL 34 52 4 MLA20

15 21 NAK PPU 35 53 5 MLA21

16 22 SYN 36 54 6 MLA22

17 23 ETB 37 55 7 MLA23

18 24 CAN SPE 38 56 8 MLA24

19 25 EM SPD 39 57 9 MLA25

1A 26 SUB 3A 58 : MLA26

1B 27 ESC 3B 59 ; MLA27

1C 28 FS 3C 60 < MLA28

1D 29 GS 3D 61 = MLA29

1E 30 RS 3E 62 > MLA30

1F 31 US CFE 3F 63 ? UNL

Multiline Interface Message Definitions

CFE† Configuration Enable
CFG† Configure
DCL Device Clear
GET Group Execute Trigger

GTL Go To Local
LLO Local Lockout
MLA My Listen Address
MSA My Secondary Address

†This multiline interface message is a proposed extension to the IEEE 488.1
specification to support the HS488 high-speed protocol.

Appendix A Multiline Interface Messages

© National Instruments Corporation A-3 NI-488DDK Software Reference Manual

Table A-1. Multiline Interface Messages (Continued)

Hex Dec ASCII Msg Hex Dec ASCII Msg

40 64 @ MTA0 60 96 ` MSA0, PPE

41 65 A MTA1 61 97 a MSA1, PPE, CFG1

42 66 B MTA2 62 98 b MSA2, PPE, CFG2

43 67 C MTA3 63 99 c MSA3, PPE, CFG3

44 68 D MTA4 64 100 d MSA4, PPE, CFG4

45 69 E MTA5 65 101 e MSA5, PPE, CFG5

46 70 F MTA6 66 102 f MSA6, PPE, CFG6

47 71 G MTA7 67 103 g MSA7, PPE, CFG7

48 72 H MTA8 68 104 h MSA8, PPE, CFG8

49 73 I MTA9 69 105 i MSA9, PPE, CFG9

4A 74 J MTA10 6A 106 j MSA10, PPE, CFG10

4B 75 K MTA11 6B 107 k MSA11, PPE, CFG11

4C 76 L MTA12 6C 108 l MSA12, PPE, CFG12

4D 77 M MTA13 6D 109 m MSA13, PPE, CFG13

4E 78 N MTA14 6E 110 n MSA14, PPE, CFG14

4F 79 O MTA15 6F 111 o MSA15, PPE, CFG15

50 80 P MTA16 70 112 p MSA16, PPD

51 81 Q MTA17 71 113 q MSA17, PPD

52 82 R MTA18 72 114 r MSA18, PPD

53 83 S MTA19 73 115 s MSA19, PPD

54 84 T MTA20 74 116 t MSA20, PPD

55 85 U MTA21 75 117 u MSA21, PPD

56 86 V MTA22 76 118 v MSA22, PPD

57 87 W MTA23 77 119 w MSA23, PPD

58 88 X MTA24 78 120 x MSA24, PPD

59 89 Y MTA25 79 121 y MSA25, PPD

5A 90 Z MTA26 7A 122 z MSA26, PPD

5B 91 [MTA27 7B 123 { MSA27, PPD

5C 92 \ MTA28 7C 124 | MSA28, PPD

5D 93] MTA29 7D 125 } MSA29, PPD

5E 94 ^ MTA30 7E 126 ~ MSA30, PPD

5F 95 _ UNT 7F 127 DEL

Multiline Interface Message Definitions (Continued)

MTA My Talk Address
PPC Parallel Poll Configure PPD
PPE Parallel Poll Enable
PPU Parallel Poll Unconfigure
SDC Selected Device Clear

SPD Serial Poll Disable
SPE Serial Poll Enable
TCT Take Control
UNL Unlisten
UNT Untalk

© National Instruments Corporation B-1 NI-488DDK Software Reference Manual

Status Word Conditions
B

Appendix

This appendix describes the conditions reported in the status word,
ibsta .

For information about how to use ibsta in your application program,
refer to Chapter 3, Developing Your Application.

Table B-1 shows the status word layout.

Table B-1. Status Word Layout

Mnemonic Bit Pos. Hex Value Description

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 END or EOS detected

SRQI 12 1000 SRQ interrupt received

CMPL 8 100 I/O completed

LOK 7 80 Lockout State

REM 6 40 Remote State

CIC 5 20 Controller-In-Charge

ATN 4 10 Attention is asserted

TACS 3 8 Talker

LACS 2 4 Listener

DTAS 1 2 Device Trigger State

DCAS 0 1 Device Clear State

Appendix B Status Word Conditions

NI-488DDK Software Reference Manual B-2 © National Instruments Corporation

ERR
ERR is set in the status word following any call that results in an error.
You can determine the particular error by examining the error variable
iberr . Appendix C, Error Codes and Solutions, describes error codes
that are recorded in iberr along with possible solutions. ERR is cleared
following any call that does not result in an error.

TIMO
TIMO indicates that the timeout period has been exceeded. TIMO is set
in the status word following an ibwait call if the TIMO bit of the mask
parameter is set and the time limit expires. TIMO is also set following
any I/O functions (for example, ibcmd , ibrd , and ibwrt) if a timeout
occurs during one of these calls. TIMO is cleared in all other
circumstances.

END
END indicates either that the GPIB EOI line has been asserted or, if you
configure the software to terminate a read on an EOS byte, that the EOS
byte has been received. If the GPIB board is performing a shadow
handshake as a result of the ibgts function, any other function can
return a status word with the END bit set if the END condition occurs
before or during that call. END is cleared when any I/O operation is
initiated.

SRQI
SRQI indicates that a GPIB device is requesting service. SRQI is set
whenever the GPIB board is CIC and the GPIB SRQ line is asserted.
SRQI is cleared either when the GPIB board ceases to be the CIC or
when the GPIB SRQ line is unasserted.

Appendix B Status Word Conditions

© National Instruments Corporation B-3 NI-488DDK Software Reference Manual

CMPL
CMPL indicates the condition of I/O operations. Because I/O calls in the
NI-488DDK driver are all synchronous (meaning the call does not return
until the operation is complete), CMPL is always set.

LOK
LOK indicates whether the board is in a lockout state. While LOK is set,
the ibloc function is inoperative for that board. LOK is set whenever the
GPIB board detects that the Local Lockout (LLO) message has been sent
either by the GPIB board or by another Controller. LOK is cleared when
the System Controller unasserts the Remote Enable (REN) GPIB line.

REM
REM indicates whether the board is in the remote state. REM is set
whenever the Remote Enable (REN) GPIB line is asserted and the GPIB
board detects that its listen address has been sent either by the GPIB
board or by another Controller. REM is cleared in the following
situations:

• When REN becomes unasserted

• When the GPIB board as a Listener detects that the Go to Local
(GTL) command has been sent either by the GPIB board or by
another Controller

• When you call the ibloc function while the LOK bit is cleared in
the status word

CIC
CIC indicates whether the GPIB board is the Controller-In-Charge. CIC
is set either when you execute the ibsic function while the GPIB board
is System Controller or when another Controller passes control to the
GPIB board. CIC is cleared either when the GPIB board detects Interface
Clear (IFC) from the System Controller or when the GPIB board passes
control to another device.

Appendix B Status Word Conditions

NI-488DDK Software Reference Manual B-4 © National Instruments Corporation

ATN
ATN indicates the state of the GPIB Attention (ATN) line. ATN is set
whenever the GPIB ATN line is asserted, and it is cleared when the ATN
line is unasserted.

TACS
TACS indicates whether the GPIB board is addressed as a Talker. TACS
is set whenever the GPIB board detects that its talk address (and
secondary address, if enabled) has been sent either by the GPIB board
itself or by another Controller. TACS is cleared whenever the GPIB
board detects the Untalk (UNT) command, its own listen address, a talk
address other than its own talk address, or Interface Clear (IFC).

LACS
LACS indicates whether the GPIB board is addressed as a Listener.
LACS is set whenever the GPIB board detects that its listen address (and
secondary address, if enabled) has been sent either by the GPIB board
itself or by another Controller. LACS is also set whenever the GPIB
board shadow handshakes as a result of the ibgts function. LACS is
cleared whenever the GPIB board detects the Unlisten (UNL) command,
its own talk address, Interface Clear (IFC), or that the ibgts function has
been called without shadow handshake.

DTAS
DTAS indicates whether the GPIB board has detected a device trigger
command. DTAS is set whenever the GPIB board, as a Listener, detects
that the Group Execute Trigger (GET) command has been sent by
another Controller. DTAS is cleared on any call immediately following
an ibwait call, if the DTAS bit is set in the ibwait mask parameter.

Appendix B Status Word Conditions

© National Instruments Corporation B-5 NI-488DDK Software Reference Manual

DCAS
DCAS indicates whether the GPIB board has detected a device clear
command. DCAS is set whenever the GPIB board detects that the Device
Clear (DCL) command has been sent by another Controller, or whenever
the GPIB board as a Listener detects that the Selected Device Clear
(SDC) command has been sent by another Controller.

If you use the ibwait function to wait for DCAS and the wait is
completed, DCAS is cleared from ibsta after the next GPIB call. The
same is true of reads and writes. If you call a read or write function such
as ibwrt , and DCAS is set in ibsta , the I/O operation is aborted. DCAS
is cleared from ibsta after the next GPIB call.

© National Instruments Corporation C-1 NI-488DDK Software Reference Manual

Error Codes and Solutions
C

Appendix

This appendix describes each error, including conditions under which it
might occur and possible solutions.

Table C-1 lists the GPIB error codes.

Table C-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB board to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB board not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB board not System Controller as
required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB board

ECAP 11 No capability for operation

Appendix C Error Codes and Solutions

NI-488DDK Software Reference Manual C-2 © National Instruments Corporation

EDVR (0)
EDVR is returned when the board name passed to ibfind cannot be
accessed. The global variable ibcntl contains an error code. This error
occurs when you try to access a board that is not installed or configured
properly.

EDVR is also returned if an invalid unit descriptor is passed to any
NI-488DDK function call.

Solutions
Following are some possible solutions:

• Use only board names configured in the driver source code as
parameters to the ibfind function.

• Use the unit descriptor returned from ibfind as the first parameter
in subsequent NI-488DDK functions. Examine the variable before
the failing function to make sure its value has not been corrupted.

ECIC (1)
ECIC is returned when one of the following board functions or routines is
called while the board is not CIC:

• Any board-level NI-488DDK functions that issue GPIB command
bytes: ibcmd , ibln , and ibrpp

• ibcac and ibgts

Solutions
Following are some possible solutions:

• Use ibsic to make the GPIB board become CIC on the GPIB.

• Use ibrsc 1 to make sure your GPIB board is configured as
System Controller.

• In multiple CIC situations, always be certain that the CIC bit appears
in the status word ibsta before attempting these calls. If it does not
appear, you can perform an ibwait (for CIC) call to delay further
processing until control is passed to the board.

Appendix C Error Codes and Solutions

© National Instruments Corporation C-3 NI-488DDK Software Reference Manual

ENOL (2)
ENOL usually occurs when you attempt a write operation without
addressing Listeners. ENOL can also indicate that the GPIB address the
application uses for a device does not match the GPIB address of any
device connected to the bus, that the GPIB cable is not connected to the
device, or that the device is not powered on.

ENOL can occur in situations where the GPIB board is not the CIC and
the Controller asserts ATN before the write call in progress has ended.

Solutions
Following are some possible solutions:

• Make sure that the GPIB address you are using matches the GPIB
address of the device to which you want to write data.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-thirds of
your devices are powered on.

• Reduce the write byte count to that which is expected by the
Controller.

EADR (3)
EADR occurs when the GPIB board is CIC and is not properly
addressing itself before read and write functions.

EADR is also returned by the function ibgts when the
shadow-handshake feature is requested and the GPIB ATN line is already
unasserted. In this case, the shadow handshake is not possible and the
error is returned to notify you of that fact.

Solutions
Following are some possible solutions:

• Make sure that the GPIB board is addressed correctly using ibcmd

before calling ibrd or ibwrt .

• Avoid calling ibgts except immediately after an ibcmd call.
(ibcmd causes ATN to be asserted.)

Appendix C Error Codes and Solutions

NI-488DDK Software Reference Manual C-4 © National Instruments Corporation

EARG (4)
EARG results when an invalid argument is passed to a function call. The
following are some examples:

• ibtmo called with a value not in the range 0 through 17

• ibeos called with meaningless bits set in the high byte of the second
parameter

• ibpad or ibsad called with invalid addresses

• ibppc called with invalid parallel poll configurations

Solution
Make sure that the parameters passed to the NI-488DDK function are
valid.

ESAC (5)
ESAC results when ibsic or ibsre is called when the GPIB board does
not have System Controller capability.

Solution
Give the GPIB board System Controller capability by calling ibrsc 1 .

EABO (6)
EABO indicates that an I/O operation has been canceled, usually due to a
timeout condition. Another cause is receiving the Device Clear message
from the CIC while performing an I/O operation. Frequently, the I/O is
not progressing (the Listener is not continuing to handshake or the Talker
has stopped talking), or the byte count in the call which timed out was
more than the other device was expecting.

Appendix C Error Codes and Solutions

© National Instruments Corporation C-5 NI-488DDK Software Reference Manual

Solutions
Following are some possible solutions:

• Use the correct byte count in input functions or have the Talker use
the END message to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo .

• Make sure that you have configured your device to send data before
you request data.

ENEB (7)
ENEB occurs when no GPIB board exists at the I/O address specified
when the driver is installed. This problem happens when the board is not
physically plugged into the system, the I/O address specified during
configuration does not match the actual board setting, or there is a system
conflict with the base I/O address.

Solution
Make sure there is a GPIB board in your computer that is properly
configured both in hardware and software using a valid base I/O address.

ECAP (11)
ECAP results when your GPIB board lacks the ability to carry out an
operation or when a particular capability has been disabled in the
software and a call is made that requires the capability.

Solution
Check the validity of the call, or make sure your GPIB interface board
and the driver both have the needed capability.

© National Instruments Corporation D-1 NI-488DDK Software Reference Manual

Using the PCI-GPIB
Hardware

D
Appendix

This appendix contains an overview of the PCI-GPIB interface board,
general instructions for installing the board in any computer, and a
summary of the hardware specifications.

Hardware Overview
The PCI-GPIB is an IEEE 488 interface for computers with PCI
expansion slots. The TNT4882C ASIC performs the basic IEEE 488
Talker, Listener, and Controller functions, including those required by
the most recent GPIB standard, IEEE 488.2. The PCI-GPIB can also
implement a high-speed GPIB protocol (HS488), so that you can have
data transfers of up to 7.8 Mbytes/s, depending on the speed of your
system.

You can use standard GPIB cables to connect the PCI-GPIB with up to
14 instruments. If you need to use more than the maximum number of
instruments, you can use the National Instruments GPIB extenders or the
GPIB expander/isolator to add additional instruments to the system.
Double-shielded GPIB cables are also available. Refer to the Hardware
Specifications section of this appendix for more information about the
hardware specifications and recommended operating conditions.

Appendix D Using the PCI-GPIB Hardware

NI-488DDK Software Reference Manual D-2 © National Instruments Corporation

Hardware Installation

Caution: Electrostatic discharge can damage several components on your GPIB
board. To avoid electrostatic damage when you handle the module, touch
the antistatic plastic package to a metal part of your computer chassis
before you remove the board from the package.

Before you install the PCI-GPIB, consult the manual that came with your
computer for specific instructions and warnings. Depending on your
system, you must have administrative privileges to install the hardware
and software. For example, on a UNIX-based system this means you
must log on as root .

Complete the following steps to install the PCI-GPIB.

1. Shut down your system by following the procedures your system’s
manufacturer recommends.

2. Turn off your computer after it has been shut down. Keep the
computer plugged in so that it remains grounded while you install
the GPIB hardware.

3. Remove the top cover (or other access panels) to give yourself access
to the computer expansion slots.

4. Find an unused PCI expansion slot in your computer.

5. Remove the corresponding slot cover on the back panel of the
computer.

6. Insert the PCI-GPIB into the slot with the GPIB connector sticking
out of the opening on the back panel, as shown in Figure D-1. It
might be a tight fit, but do not force the board into place.

Appendix D Using the PCI-GPIB Hardware

© National Instruments Corporation D-3 NI-488DDK Software Reference Manual

Figure D-1. Installing the PCI-GPIB

7. Screw the mounting bracket of the PCI-GPIB to the back panel rail
of the computer.

8. Replace the top cover (or the access panel to the expansion slot).

9. Turn on your computer. The PCI-GPIB interface board is now
installed.

Appendix D Using the PCI-GPIB Hardware

NI-488DDK Software Reference Manual D-4 © National Instruments Corporation

Hardware Specifications
Table D-1 describes some hardware characteristics of the PCI-GPIB
board.

Table D-1. PCI-GPIB Hardware Characteristics

Characteristic Specification

Dimensions 13.34 by 10.67 cm (5.25 by 4.20 in.)

Power Requirement +5 VDC, 600 mA Maximum

I/O Connector IEEE 488 Standard 24-Pin

Operating Environment
 Component Temperature
 Relative Humidity

0° to 55° C
10% to 90%, Noncondensing

Storage Environment
 Temperature
 Relative Humidity

–20° to 70° C
5% to 90%, Noncondensing

EMI FCC Class A Verified

© National Instruments Corporation E-1 NI-488DDK Software Reference Manual

Using the CPCI-GPIB
Hardware

E
Appendix

This appendix contains an overview of the CPCI-GPIB interface board,
general instructions for installing the board in any computer, and a
summary of the hardware specifications.

Hardware Overview
The CPCI-GPIB hardware transforms your system into a combination
GPIB Talker/Listener/Controller. The TNT4882C chip on each GPIB
board combines the circuitry of the NAT4882 ASIC, the Turbo488 ASIC,
and GPIB transceivers to create a single-chip IEEE 488.2 interface. The
TNT4882C also implements the HS488 high-speed protocol, which
increases the maximum data transfer rate to up to 7.8 Mbytes/s,
depending on the system and the system configuration.

The CPCI-GPIB board is completely software-configurable. It complies
with the PCI Local Bus Specification.

You can use standard GPIB cables to connect the CPCI-GPIB with up to
14 instruments. If you want to use more instruments, you can order a bus
extender or expander from National Instruments. Refer to the Hardware
Specifications section of this appendix for more information about the
hardware specifications and recommended operating conditions.

Appendix E Using the CPCI-GPIB Hardware

NI-488DDK Software Reference Manual E-2 © National Instruments Corporation

Hardware Installation

Caution: Electrostatic discharge can damage several components on these GPIB
boards. To avoid such damage in handling your board, touch the
antistatic plastic package to a metal part of your system chassis before
removing the board from the package.

Before you install the CPCI-GPIB, consult the manual that came with
your computer for specific instructions and warnings. Depending on your
system, you must have administrative privileges to install the hardware
and software. For example, on a UNIX-based system this means you
must log on as root .

Complete the following steps to install the CPCI-GPIB.

1. Make sure that your system is turned off. Keep the system plugged
in so that it remains grounded while you install the CPCI-GPIB.

2. Choose an unused CompactPCI slot in your system.

3. Remove the slot cover for the slot you have chosen.

4. Insert the CPCI-GPIB board into the slot. It might be a tight fit, but
do not force the board into place. Figure E-1 shows how to install the
CPCI-GPIB into a CompactPCI subrack.

Appendix E Using the CPCI-GPIB Hardware

© National Instruments Corporation E-3 NI-488DDK Software Reference Manual

Figure E-1. Installing the CPCI-GPIB

5. Screw the front panel of the CPCI-GPIB to the front panel mounting
rail of the system.

6. Turn on your system. The CPCI-GPIB installation is now complete.

Appendix E Using the CPCI-GPIB Hardware

NI-488DDK Software Reference Manual E-4 © National Instruments Corporation

Hardware Specifications
Table E-1 describes some hardware characteristics of the CPCI-GPIB
board.

Table E-1. CPCI-GPIB Hardware Characteristics

Characteristic Specification

Dimensions 100 by 160 mm
(3.94 by 6.3 in.)

Power Requirement
(from CompactPCI Bus)

+5 VDC 600 mA Typical
800 mA Maximum

I/O Connector IEEE 488 Standard 24-Pin

Operating Environment
 Temperature
 Relative Humidity

0° to 55° C
10% to 90%, Noncondensing

Storage Environment
 Temperature
 Relative Humidity

–20° to 70° C
5% to 95%, Noncondensing

EMI FCC Class A Verified

© National Instruments Corporation F-1 NI-488DDK Software Reference Manual

Using the PMC-GPIB
Hardware

F
Appendix

This appendix contains an overview of the PMC-GPIB interface board,
general instructions for installing the board in any computer, and a
summary of the hardware specifications.

Hardware Overview
The PMC-GPIB hardware transforms your system into a combination
GPIB Talker/Listener/Controller. The TNT4882C chip on each GPIB
board combines the circuitry of the NAT4882 ASIC, the Turbo488 ASIC,
and GPIB transceivers to create a single-chip IEEE 488.2 interface. The
TNT4882C also implements the HS488 high-speed protocol, which
increases the maximum data transfer rate to up to 7.8 Mbytes/s,
depending on the system and the system configuration.

The PMC-GPIB board is completely software configurable. It complies
with the PCI Local Bus Specification.

You can use standard GPIB cables to connect the PMC-GPIB with up to
14 instruments. If you want to use more instruments, you can order a bus
extender or expander from National Instruments. Refer to the Hardware
Specifications, for more information about the hardware specifications
and recommended operating conditions.

Appendix F Using the PMC-GPIB Hardware

NI-488DDK Software Reference Manual F-2 © National Instruments Corporation

Hardware Installation

Caution: Electrostatic discharge can damage several components on your GPIB
board. To avoid such damage in handling your board, touch the
antistatic plastic package to a metal part of your system chassis before
removing the board from the package.

Before you install the PMC-GPIB, consult the manual that came with
your computer for specific instructions and warnings. Depending on your
system, you must have administrative privileges to install the hardware
and software. For example, on a UNIX-based system this means you
must log on as root .

Complete the following steps to install the PMC-GPIB.

1. Make sure that your system is turned off.

2. Find an unused PMC slot in your system. You might need to remove
the host from the system to gain access to the PMC slot.

3. Remove the corresponding slot filler panel from the host.

4. Insert the PMC-GPIB into the slot as shown in Figure F-1. It might
be a tight fit, but do not force the board into place.

Appendix F Using the PMC-GPIB Hardware

© National Instruments Corporation F-3 NI-488DDK Software Reference Manual

Figure F-1. Installing the PMC-GPIB

5. Use the mounting hardware provided to fasten the PMC-GPIB to
the host.

6. Reinstall the host, if you removed it to install the PMC-GPIB.

7. Turn on your system. The PMC-GPIB installation is now complete.

Appendix F Using the PMC-GPIB Hardware

NI-488DDK Software Reference Manual F-4 © National Instruments Corporation

Hardware Specifications
Table F-1 describes some hardware characteristics of the PMC-GPIB
board.

Table F-1. PMC-GPIB Hardware Characteristics

Characteristic Specification

Dimensions 74 by 149 mm
(2.9 by 5.9 in.)

Power Requirement
(from PMC Bus)

+5 VDC 600 mA Typical
800 mA Maximum

I/O Connector Micro D-sub 25-Pin

PCI Signaling Environment +5 VDC

Power Dissipation 3 Watts Typical
4 Watts Maximum

Operating Environment
 Temperature
 Relative Humidity

0° to 55° C
10% to 90%, Noncondensing

Storage Environment
 Temperature
 Relative Humidity

–20° to 70° C
5% to 95%, Noncondensing

EMI FCC Class A Verified

© National Instruments Corporation G-1 NI-488DDK Software Reference Manual

Customer Communication
G

Appendix

For your convenience, this appendix contains forms to help you gather the information necessary to
help us solve technical problems and a form you can use to comment on the product documentation.
When you contact us, we need the information on the Technical Support Form and the configuration
form, if your manual contains one, about your system configuration to answer your questions as
quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
quickly provide the information you need. Our electronic services include a bulletin board service,
an FTP site, a fax-on-demand system, and e-mail support. If you have a hardware or software
problem, first try the electronic support systems. If the information available on these systems does
not answer your questions, we offer fax and telephone support through our technical support
centers, which are staffed by application engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded instructions on
how to use the bulletin board and FTP services and for BBS automated information, call
(512) 795-6990. You can access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.

Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
wide range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
(512) 418-1111.

E-Mail Support (currently U.S. only)
You can submit technical support questions to the applications engineering team through e-mail at
the Internet address listed below. Remember to include your name, address, and phone number so
we can contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact
the source from which you purchased your software to obtain support.

Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 527 2321 09 502 2930
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and
use the completed copy of this form as a reference for your current configuration. Completing this
form accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Title ___

Company ___

Address __

__

Fax (____) _________________________ Phone (____) ___________________________

Computer brand ___________________ Model ______________ Processor ________________

Operating system (include version number) __

Clock Speed ________ MHz RAM _________ MB Display adapter ________________

Mouse ____ yes _____ no Other adapters installed _____________________________

Hard disk capacity ________ MB Brand __

Instruments used __

National Instruments hardware product model _____________________ Revision ____________

Configuration __

National Instruments software product ___________________________ Version ____________

Configuration __

The problem is ___

__

__

__

List any error messages __

__

__

The following steps will reproduce the problem ___

__

__

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration,
and use this form as a reference for your current configuration. Completing this form accurately
before contacting National Instruments for technical support helps our applications engineers answer
your questions more efficiently.

National Instruments Products
GPIB Hardware Revision __

GPIB Hardware Settings (slot number, and so on) ______________________________________

NI-488DDK Version ___

Other Products
Computer Make and Model __

Microprocessor __

Clock Frequency __

Type of Video Board Installed __

Operating System __

Operating System Version ___

Operating System Mode ___

Programming Language ___

Programming Language Version __

Other Boards in System ___

Base I/O Address of Other Boards ___

DMA Channels of Other Boards __

Interrupt Level of Other Boards ___

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: NI-488DDK Software Reference Manual

Edition Date: July 1997

Part Number: 321418A-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

Thank you for your help.

Name __

Title ___

Company ___

Address __

__

Phone (____) ________________________ Fax (_____) ___________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation Glossary-1 NI-488DDK Software Reference Manual

Glossary

Prefix Meaning Value

n- nano- 10–9

µ- micro- 10–6

m- milli- 10–3

k- kilo- 103

M- mega- 106

A

acceptor handshake Listeners use this GPIB interface function to receive data, and all devices
use it to receive commands. See handshake.

access board The GPIB board that controls and communicates with the devices on the
bus that are attached to it.

ANSI American National Standards Institute.

API Application programming interface.

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with respect to the
execution of a program.

Glossary

NI-488DDK Software Reference Manual Glossary-2 © National Instruments Corporation

B

base I/O address See I/O address.

board-level function A rudimentary function that performs a single operation.

C

caller A place in the program from which a call is made; the calling function.

CFE Configuration Enable. The GPIB command which precedes CFGn and is
used to place devices into their configuration mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE and are used
to configure all devices for the number of meters of cable in the system
so that HS488 transfers occur without errors.

CIC Controller-In-Charge. The device that manages the GPIB by sending
interface messages to other devices.

CPU Central processing unit.

D

DAV Data Valid. One of the three GPIB handshake lines. See handshake.

DCL Device Clear. The GPIB command used to reset the device or internal
functions of all devices. See SDC.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data bytes from one
device to another.

DMA Direct memory access. High-speed data transfer between the GPIB board
and memory that is not handled directly by the CPU. Not available on
some systems.

driver Device driver software installed within the operating system.

Glossary

© National Instruments Corporation Glossary-3 NI-488DDK Software Reference Manual

E

END or END Message A message that signals the end of a data string. END is sent by asserting
the GPIB End or Identify (EOI) line with the last data byte.

EOI A GPIB line that is used to signal either the last byte of a data message
(END) or the parallel poll Identify (IDY) message.

EOS or EOS Byte A 7- or 8-bit end-of-string character that is sent as the last byte of a data
message.

EOT End of transmission.

ESB The Event Status bit is part of the IEEE 488.2-defined status byte which
is received from a device responding to a serial poll.

F

Function Return Describes the return value of the function.

G

GET Group Execute Trigger. It is the GPIB command used to trigger a device
or internal function of an addressed Listener.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE Standard
488.1-1987 and ANSI/IEEE Standard 488.2-1992.

GPIB address The address of a device on the GPIB, composed of a primary address
(MLA and MTA) and perhaps a secondary address (MSA). The GPIB
board has both a GPIB address and an I/O address.

GPIB board Refers to the National Instruments family of GPIB interface boards.

GTL Go To Local. It is the GPIB command used to place an addressed
Listener in local (front panel) control mode.

Glossary

NI-488DDK Software Reference Manual Glossary-4 © National Instruments Corporation

H

handshake The mechanism used to transfer bytes from the Source Handshake
function of one device to the Acceptor Handshake function of another
device. The three GPIB lines DAV, NRFD, and NDAC are used in an
interlocked fashion to signal the phases of the transfer, so that bytes can
be sent asynchronously (for example, without a clock) at the speed of the
slowest device.

For more information about handshaking, refer to the ANSI/IEEE
Standard 488.1-1987.

hex Hexadecimal; a number represented in base 16. For example,
decimal 16 = hex 10.

I

ibcnt After each NI-488 I/O function, this global variable contains the actual
number of bytes transmitted.

iberr A global variable that contains the specific error code associated with a
function call that failed.

ibsta At the end of each function call, this global variable (status word)
contains status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices and used to
manage the GPIB. Interface messages are also referred to as GPIB
commands.

I/O Input/Output. In the context of this manual, the transmission of
commands or messages between the computer via the GPIB board and
other devices on the GPIB.

I/O address The address of the GPIB board from the point of view of the CPU, as
opposed to the GPIB address of the GPIB board. Also called port address
or board address.

ist An Individual Status bit of the status byte used in the Parallel Poll
Configure function.

Glossary

© National Instruments Corporation Glossary-5 NI-488DDK Software Reference Manual

K

kernel The set of programs in an operating system that implements basic system
functions.

kernel-level The linking or installation of the NI-488DDK driver into the operating
implementation system kernel so that the driver functions as a general system resource

available to all application programs.

L

language interface Code that enables an application program that uses NI-488DDK
functions to access the driver.

Listener A GPIB device that receives data messages from a Talker.

LLO Local Lockout. The GPIB command used to tell all devices that they may
or should ignore remote (GPIB) data messages or local (front panel)
controls, depending on whether the device is in local or remote program
mode.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined status byte
which is received from a device responding to a serial poll.

MLA My Listen Address. A GPIB command used to address a device to be a
Listener. It can be any one of the 31 primary addresses.

MSA My Secondary Address. The GPIB command used to address a device to
be a Listener or a Talker when extended (two byte) addressing is used.
The complete address is a MLA or MTA address followed by an MSA
address. There are 31 secondary addresses for a total of 961 distinct listen
or talk addresses for devices.

MTA My Talk Address. A GPIB command used to address a device to be a
Talker. It can be any one of the 31 primary addresses.

Glossary

NI-488DDK Software Reference Manual Glossary-6 © National Instruments Corporation

N

NDAC Not Data Accepted. One of the three GPIB handshake lines.
See handshake.

NRFD Not Ready For Data. One of the three GPIB handshake lines.
See handshake.

O

OS Operating system.

P

parallel poll The process of polling all configured devices at once and reading a
composite poll response. See serial poll.

PPC Parallel Poll Configure. It is the GPIB command used to configure an
addressed Listener to participate in polls.

PPD Parallel Poll Disable. It is the GPIB command used to disable a
configured device from participating in polls. There are 16 PPD
commands.

PPE Parallel Poll Enable. It is the GPIB command used to enable a configured
device to participate in polls and to assign a DIO response line. There are
16 PPE commands.

PPU Parallel Poll Unconfigure. It is the GPIB command used to disable any
device from participating in polls.

S

s Seconds.

SDC Selected Device Clear. The GPIB command used to reset internal or
device functions of an addressed Listener. See DCL.

serial poll The process of polling and reading the status byte of one device at a time.
See parallel poll.

Glossary

© National Instruments Corporation Glossary-7 NI-488DDK Software Reference Manual

service request See SRQ.

SPD Serial Poll Disable. The GPIB command used to cancel an SPE
command.

SPE Serial Poll Enable. The GPIB command used to enable a specific device
to be polled. That device must also be addressed to talk. See SPD.

SRQ Service Request. The GPIB line that a device asserts to notify the CIC
that the device needs servicing.

status byte The IEEE 488.2-defined data byte sent by a device when it is serially
polled.

status word See ibsta .

synchronous Refers to the relationship between the NI-488DDK driver functions and a
process when executing driver functions is predictable; the process is
blocked until the driver completes the function.

System Controller The single designated Controller that can assert control (become CIC of
the GPIB) by sending the Interface Clear (IFC) message. Other devices
can become CIC only by having control passed to them.

T

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control. The GPIB command used to pass control of the bus from
the current Controller to an addressed Talker.

timeout A feature of the NI-488DDK driver that prevents I/O functions from
hanging indefinitely when there is a problem on the GPIB.

U

ud Unit descriptor. A variable name and first argument of each function call
that contains the unit descriptor of the GPIB interface board or other
GPIB device that is the object of the function.

UNL Unlisten. The GPIB command used to unaddress any active Listeners.

UNT Untalk. The GPIB command used to unaddress an active Talker.

Glossary

NI-488DDK Software Reference Manual Glossary-8 © National Instruments Corporation

user-level The static or dynamic linking of the NI-488DDK driver directly to a user
implementation application program. This implementation method is not available on

some operating systems, for which a kernel-level implementation is the
only option.

	NI-488DDK Software Reference Manual
	Important Information
	Warranty
	Copyright
	Trademarks
	Warning

	Table of Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	NI-488DDK Software
	Working with the Distribution Media
	Working with the Distribution Contents

	GPIB Overview
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines

	Setting up and Configuring Your System
	Controlling More Than One Board
	Configuration Requirements

	Chapter 2 Developing Your Driver
	Driver Organization
	Driver Coding Conventions
	Choosing an Implementation Method
	Writing a New OS Layer
	Support Code Location
	Porting the DDK Driver

	Compiling, Linking, and Installing the Driver
	Testing and Debugging the Driver
	Debugging Run-Time Errors
	Documentation of Debugging Tools

	Chapter 3 Developing Your Application
	Using NI-488DDK Functions
	Items to Include in Your Application
	Checking Status with Global Variables
	Status Word (ibsta)
	Error Variable (iberr)
	Count Variables (ibcnt and ibcntl)

	Compiling and Linking Your Application
	Debugging Considerations
	Using the Global Status Variables
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Chapter 4 NI-488DDK Functions
	IBCAC
	IBCMD
	IBEOS
	IBEOT
	IBFIND
	IBGTS
	IBIST
	IBLINES
	IBLN
	IBLOC
	IBONL
	IBPAD
	IBPOKE
	IBPPC
	IBRD
	IBRPP
	IBRSC
	IBRSV
	IBSAD
	IBSIC
	IBSRE
	IBTMO
	IBWAIT
	IBWRT

	Chapter 5 GPIB Programming Techniques
	Termination of Data Transfers
	Waiting for GPIB Conditions
	Talker/Listener Applications
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	SRQ and Serial Polling with NI-488DDK Functions

	Parallel Polling
	Implementing a Parallel Poll with NI-488DDK Functions

	Appendix A Multiline Interface Messages
	Appendix B Status Word Conditions
	ERR
	TIMO
	END
	SRQI
	CMPL
	LOK
	REM
	CIC
	ATN
	TACS
	LACS
	DTAS
	DCAS

	Appendix C Error Codes and Solutions
	EDVR (0)
	ECIC (1)
	ENOL (2)
	EADR (3)
	EARG (4)
	ESAC (5)
	EABO (6)
	ENEB (7)
	ECAP (11)

	Appendix D Using the PCI-GPIB Hardware
	Hardware Overview
	Hardware Installation
	Hardware Specifications

	Appendix E Using the CPCI-GPIB Hardware
	Hardware Overview
	Hardware Installation
	Hardware Specifications

	Appendix F Using the PMC-GPIB Hardware
	Hardware Overview
	Hardware Installation
	Hardware Specifications

	Appendix G Customer Communication
	Glossary
	Figures
	Figure 1-1. GPIB Address Bits
	Figure 1-2. Linear and Star System Configuration
	Figure 1-3. Example of Multiboard System Setup
	Figure 2-1. The IB Driver Module (ib.c)
	Figure 2-2. The CIB Language Interface Module (cib.c)
	Figure 2-3. User-Level Implementation
	Figure 2-4. Kernel-Level Implementation
	Figure D-1. Installing the PCI-GPIB
	Figure E-1. Installing the CPCI-GPIB
	Figure F-1. Installing the PMC-GPIB

	Tables
	Table 1-1. GPIB Handshake Lines
	Table 1-2. GPIB Interface Management Lines
	Table 2-1. NI-488DDK Driver Directory
	Table 3-1. Status Word Layout
	Table 4-1. NI-488DDK Functions
	Table 4-2. EOS Configurations
	Table 4-3. Timeout Code Values
	Table 4-4. Wait Mask Layout
	Table A-1. Multiline Interface Messages
	Table B-1. Status Word Layout
	Table C-1. GPIB Error Codes
	Table D-1. PCI-GPIB Hardware Characteristics
	Table E-1. CPCI-GPIB Hardware Characteristics
	Table F-1. PMC-GPIB Hardware Characteristics

